
[1]

Machine Learning for the Web

Explore the web and make smarter predictions
using Python

Andrea Isoni

BIRMINGHAM - MUMBAI

Machine Learning for the Web

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1250716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-660-7

www.packtpub.com

www.packtpub.com

Credits

Author
Andrea Isoni

Reviewers
Chetan Khatri

Pavan Kumar Kolluru

Dipanjan Sarkar

Commissioning Editor
Akram Hussain

Acquisition Editor
Sonali Vernekar

Content Development Editor
Arun Nadar

Technical Editor
Sushant S Nadkar

Copy Editor
Vikrant Phadkay

Project Coordinator
Ritika Manoj

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Kirk D'Penha

Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Foreword

What is machine learning? In the past year, whether it was during a conference, a
seminar or an interview, a lot of people have asked me to define machine learning.
There is a lot of curiosity around what it is, as human nature requires us to define
something before we begin to understand what its potential impact on our lives may
be, what this new thing may mean for us in the future.

Similar to other disciplines that become suddenly popular, machine learning is not
new. A lot of people in the scientific community have been working with algorithms
to automate repetitive activities over time for several years now. An algorithm where
the parameters are fixed is called static algorithm and its output is predictable and
function only of the input variables. On the other hand, when the parameters of
the algorithm are dynamic and function of external factors (most frequently, the
previous outputs of the same algorithm), then it is called dynamic. Its output is
no longer a function only of the input variables and that is the founding pillar of
machine learning: a set of instructions that can learn from the data generated during
the previous iterations to make a better output the following time.

Scientists, developers, and engineers have been dealing with fuzzy logic, neural
networks, and other kinds of machine learning techniques for years, but it is only
now that this discipline is becoming popular, as its applications have left the lab
and are now used in marketing, sales, and finance—basically, every activity that
requires the repetition of the same operation over and over again could benefit
from machine learning.

The implications are easy to grasp and will have a deep impact on our society.
The best way I can think of to describe what will likely happen in the next 5 to
10 years with machine learning is recalling what happened during the industrial
revolution. Before the advent of the steam engine, lots of people were performing
highly repetitive physical tasks, often risking their lives or their health for minimum
wages; thanks to the industrial revolution, society evolved and machines took over
the relevant parts of manufacturing processes, leading to improved yields, more
predictable and stable outputs, improved quality of the products and new kinds
of jobs, controlling the machines that were replacing physical labor. This was the
first time in the history of mankind where man had delegated the responsibility
for the creation of something else to a thing we had designed and invented. In the
same way, machine learning will change the way data operations are performed,
reducing the need of human intervention and leaving optimization to machines and
algorithms. Operators will no longer have a direct control over data, but they will
control algorithms that, in turn, will control data. This will allow faster execution
of operations, larger datasets will be manageable by fewer people, errors will be
reduced, and more stable and predictable outcomes will be guaranteed. As many
things that have a deep impact on our society, it is easy to love it as it is to hate it.
Lovers will praise the benefits that machine learning will drive to their lives, haters
will be criticizing the fact that, in order to be effective, machine learning needs lots of
iterations, hence, lots of data. Usually, the data we feed algorithms with is our own
personal information.

In fact, the main applications where machine learning is taking off as a tool
to improve productivity are marketing and customer support, where a deep
knowledge of the customer is required to give him/her the personal service that
will make the difference between a purchase or a visit or between a happy and an
unhappy customer.

In marketing, for example, marketers are starting to take into consideration
information, such as location, device, past purchases, what websites one has visited,
weather conditions, to name just a few of the parameters that determine whether a
company would decide to display its ads to a specific set of customers.

Long gone are the days of broadcasting marketing messages through untraceable
media, such as TV or newspapers. Today's marketers want to know everything about
who clicks and buys their products so that they can optimize creatives, spend, and
allocate budget to make the best possible use of the resources at their disposal. This
leads to unprecedented levels of personalization that, when exploited properly, make
customers feel valued as individuals and not part of a socio-demographic group.

It is intriguing and challenging at the same time, but there is no doubt that the
winners of the next decade will be those companies or individuals who can
understand unstructured data and make decisions based on them in a scalable
way: I see no other way than machine learning to achieve such a feat.

Andrea Isoni's book is a step into this world; reading it will be like a peek down the
rabbit hole, where you'll be able to see a few applications of these techniques, mostly
applied to web development, where machine learning serves to create customized
websites and allow customers to see their own, optimized version of a service.

If you want to futureproof your career, this is a must read; anyone dealing with data
in the next decade will need to be proficient in these techniques to succeed.

Davide Cervellin, @ingdave
Head of EU Analytics at eBay

About the Author

Andrea Isoni is a data scientist, PhD, and physicist professional with extensive
experience in software developer positions. He has an extensive knowledge of
machine learning algorithms and techniques. He also has experience with multiple
languages, such as Python, C/C++, Java, JavaScript, C#, SQL, HTML, and Hadoop.

About the Reviewers

Chetan Khatri is a data science researcher who has a total of 4.6 years of
experience in research and development. He works as a principal engineer, data
and machine learning, at Nazara Technologies Pvt. Ltd, where he leads data science
practice in the gaming business and the subscription telecom business. He has
worked with a leading data company and a Big 4 company, where he managed
the Data Science Practice Platform and one of the Big 4 company's resources team.
Previously, he was worked with R & D Lab and Eccella Corporation. He completed
his master's degree in computer science and minor data science at KSKV Kachchh
University as a gold medalist.

He contributes to society in various ways, including giving talks to sophomore
students at universities and giving talks on the various fields of data science in
academia and at various conferences, thus helping the community by providing
a data science platform. He has excellent correlative knowledge of both academic
research and industry best practices. He loves to participate in Data Science
Hackathons. He is one of the founding members of PyKutch—A Python Community.
Currently, he is exploring deep neural networks and reinforcement learning with
parallel and distributed computing for government data.

I would like to thanks Prof. Devji Chhanga, Head of the Computer
Science Department, University of Kachchh, for routing me to the
correct path and for his valuable guidance in the field of data science
research. I would also like to thank my beloved family.

Pavan Kumar Kolluru is an interdisciplinary engineer with expertise in Big Data;
digital images and processing; remote sensing (hyperspectral data and images); and
programming in Python, R, and MATLAB. His major emphasis is on Big Data, using
machine learning techniques, and its algorithm development.

His quest is to find a link between different disciplines so as to make their processes
much easier computationally and automatic.

As a data (image and signal) processing professional/trainer, he has worked on
multi/hyper spectral data, which gave him expertise in processing, information
extraction, and segmentation with advanced processing using OOA, random sets,
and Markov random fields.

As a programmer/trainer, he concentrates on Python and R languages, serving both
the corporate and educational fraternities. He also trained various batches in Python
and packages (signal, image, data analytics, and so on).

As a machine learning researcher/trainer, he has expertise in classifications (Sup and
Unsup), modeling and data understanding, regressions, and data dimensionality
reduction (DR). This lead him to develop a novel machine learning algorithm on Big
Data (images or signals) that performs DR and classifications in a single framework
in his M.Sc. research, fetching distinction marks for it. He trained engineers from
various corporate giants on Big Data analysis using Hadoop and MapReduce. His
expertise in Big Data analysis is in HDFS, Pig, Hive, and Spark.

Dipanjan Sarkar is an Data Scientist at Intel, the world's largest silicon company
which is on a mission to make the world more connected and productive. He
primarily works on analytics, business intelligence, application development,
and building large scale intelligent systems. He received his Master's degree in
Information Technology from the International Institute of Information Technology,
Bangalore. His area of specialization includes software engineering, data science,
machine learning, and text analytics.

Dipanjan's interests include learning about new technology, disruptive start-ups,
data science, and more recently deep learning. In his spare time he loves reading,
writing, gaming, and watching popular sitcoms. He has authored a book on Machine
Learning titled R Machine Learning by Example, Packt Publishing and also acted as
a technical reviewer for several books on machine learning and Data Science from
Packt Publishing.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface v
Chapter 1: Introduction to Practical Machine
Learning Using Python 1

General machine-learning concepts 2
Machine-learning example 5

Installing and importing a module (library) 7
Preparing, manipulating and visualizing data – NumPy,
pandas and matplotlib tutorials 8

Using NumPy 8
Arrays creation 9
Array manipulations 13
Array operations 18
Linear algebra operations 23
Statistics and mathematical functions 25

Understanding the pandas module 26
Exploring data 26
Manipulate data 32

Matplotlib tutorial 37
Scientific libraries used in the book 41
When to use machine learning 42
Summary 43

Chapter 2: Unsupervised Machine Learning 45
Clustering algorithms 45

Distribution methods 46
Expectation maximization 46
Mixture of Gaussians 47

Centroid methods 50
k-means 50

Density methods 51
Mean – shift 52

Table of Contents

[ii]

Hierarchical methods 54
Training and comparison of the clustering methods 57

Dimensionality reduction 65
Principal Component Analysis (PCA) 66

PCA example 68
Singular value decomposition 71
Summary 72

Chapter 3: Supervised Machine Learning 73
Model error estimation 73
Generalized linear models 75

Linear regression 76
Ridge regression 76
Lasso regression 77
Logistic regression 77

Probabilistic interpretation of generalized linear models 78
k-nearest neighbours (KNN) 80

Naive Bayes 80
Multinomial Naive Bayes 82
Gaussian Naive Bayes 84

Decision trees 85
Support vector machine 89

Kernel trick 95
A comparison of methods 96

Regression problem 97
Classification problem 102

Hidden Markov model 107
A Python example 112

Summary 118
Chapter 4: Web Mining Techniques 119

Web structure mining 120
Web crawlers (or spiders) 120
Indexer 121
Ranking – PageRank algorithm 121

Web content mining 123
Parsing 124

Natural language processing 125
Information retrieval models 126

TF-IDF 127
Latent Semantic Analysis (LSA) 127
Doc2Vec (word2vec) 128

Table of Contents

[iii]

Word2vec – continuous bag of words and skip-gram architectures 128
Mathematical description of the CBOW model 129
Doc2Vec extension 131
Movie review query example 132

Postprocessing information 137
Latent Dirichlet allocation 138

Model 139
Example 142

Opinion mining (sentiment analysis) 144
Summary 151

Chapter 5: Recommendation Systems 153
Utility matrix 154
Similarities measures 156
Collaborative Filtering methods 157

Memory-based Collaborative Filtering 157
User-based Collaborative Filtering 157
Item-based Collaborative Filtering 160
Simplest item-based Collaborative Filtering – slope one 162

Model-based Collaborative Filtering 164
Alternative least square (ALS) 164
Stochastic gradient descent (SGD) 166
Non-negative matrix factorization (NMF) 168
Singular value decomposition (SVD) 169

CBF methods 170
Item features average method 171
Regularized linear regression method 173

Association rules for learning recommendation system 175
Log-likelihood ratios recommendation system method 177
Hybrid recommendation systems 179
Evaluation of the recommendation systems 183

Root mean square error (RMSE) evaluation 185
Classification metrics 188

Summary 190
Chapter 6: Getting Started with Django 191

HTTP – the basics of the GET and POST methods 191
Installation and server creation 192
Settings 193

Writing an app – most important features 196
Models 196
URL and views behind HTML web pages 197

HTML pages 197
URL declarations and views 200

Table of Contents

[iv]

Admin 204
Shell interface 206
Commands 206
RESTful application programming interfaces (APIs) 207

Summary 210
Chapter 7: Movie Recommendation System Web Application 211

Application setup 211
Models 213
Commands 215
User sign up login/logout implementation 221
Information retrieval system (movies query) 225
Rating system 228
Recommendation systems 229
Admin interface and API 231
Summary 233

Chapter 8: Sentiment Analyser Application for Movie Reviews 235
Application usage overview 236
Search engine choice and the application code 238
Scrapy setup and the application code 240

Scrapy settings 241
Scraper 241
Pipelines 245
Crawler 245

Django models 248
Integrating Django with Scrapy 249

Commands (sentiment analysis model and delete queries) 250
Sentiment analysis model loader 250
Deleting an already performed query 254
Sentiment reviews analyser – Django views and HTML 255

PageRank: Django view and the algorithm code 259
Admin and API 263
Summary 267

Index 269

[v]

Preface
Data science and machine learning in particular are emerging as leading topics in
the tech commercial environment to evaluate the always increasing amount of data
generated by the users. This book will explain how to use Python to develop a web
commercial application using Django and how to employ some specific libraries
(sklearn, scipy, nltk, Django, and some others) to manipulate and analyze (through
machine learning techniques) data that is generated or used in the application.

What this book covers
Chapter 1, Introduction to Practical Machine Learning Using Python, discusses the
main machine learning concepts together with the libraries used by data science
professionals to handle the data in Python.

Chapter 2, Machine Learning Techniques – Unsupervised Learning, describes the
algorithms used to cluster datasets and to extract the main features from the data.

Chapter 3, Supervised Machine Learning, presents the most relevant supervised
algorithms to predict the labels of a dataset.

Chapter 4, Web Mining Techniques, discusses the main techniques to organize, analyze,
and extract information from web data

Chapter 5, Recommendation Systems, covers the most popular recommendation
systems used in a commercial environment to date in detail.

Chapter 6, Getting Started with Django, introduces the main Django features and
characteristics to develop a web application.

Preface

[vi]

Chapter 7, Movie Recommendation System Web Application, describes an example to put
in practice the machine learning concepts developed in Chapter 5, Recommendation
Systems and Chapter 6, Getting Started with Django, recommending movies to final
web users.

Chapter 8, Sentiment Analyser Application on Movie Reviews, covers another example to
use the knowledge explained in Chapter 3, Supervised Machine Learning, Chapter 4, Web
Mining Techniques, and Chapter 6, Getting Started with Django, analyzing the sentiment
of the movies' reviews online and their importance.

What you need for this book
The reader should have a computer with Python 2.7 installed to be able to run
(and modify) the code discussed throughout the chapters.

Who this book is for
Any person with some programming (in Python) and statistics background who is
curious about machine learning and/or pursuing a career in data science will benefit
from reading this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Django library is installed by typing the following command in the Terminal:
sudo pip install django."

A block of code is set as follows:

INSTALLED_APPS = (
...
'rest_framework',
'rest_framework_swagger',
'nameapp',
)

Preface

[vii]

Any command-line input or output is written as follows:

python manage.py migrate

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "As
you can see, the body of the page is specified by two boxes to be filled in with the
person's name and their e-mail address, pressing Add to add them to the database."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Machine-Learning-for-the-Web. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/MachineLearningfortheWeb_ColorImages.
pdf.

https://github.com/PacktPublishing/Machine-Learning-for-the-Web
https://github.com/PacktPublishing/Machine-Learning-for-the-Web
http://www.packtpub.com/sites/default/files/downloads/MachineLearningfortheWeb_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MachineLearningfortheWeb_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MachineLearningfortheWeb_ColorImages.pdf

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction to Practical
Machine Learning

Using Python
In the technology industry, the skill of analyzing and mining commercial data is
becoming more and more important. All the companies that are related to the online
world generate data that can be exploited to improve their business, or can be sold
to other companies. This huge amount of information, which can be commercially
useful, needs to be restructured and analyzed using the expertise of data science
(or data mining) professionals. Data science employs techniques known as machine
learning algorithms to transform the data in models, which are able to predict the
behavior of certain entities that are highly considered by the business environment.
This book is about these algorithms and techniques that are so crucial in today's
technology business world, and how to efficiently deploy them in a real commercial
environment. You will learn the most relevant machine-learning techniques and will
have the chance to employ them in a series of exercises and applications designed to
enhance commercial awareness and, with the skills learned in this book, these can be
used in your professional experience. You are expected to already be familiar with
the Python programming language, linear algebra, and statistics methodologies to
fully acquire the topics discussed in this book.

• There are many tutorials and classes available online on these subjects, but
we recommend you read the official Python documentation (https://docs.
python.org/), the books Elementary Statistics by A. Bluman and Statistical
Inference by G. Casella and R. L. Berger to understand the statistical main
concepts and methods and Linear Algebra and Its Applications by G. Strang to
learn about linear algebra.

https://docs.python.org/
https://docs.python.org/

Introduction to Practical Machine Learning Using Python

[2]

The purpose of this introductory chapter is to familiarize you with the more
advanced libraries and tools used by machine-learning professionals in Python,
such as NumPy, pandas, and matplotlib, which will help you to grasp the necessary
technical knowledge to implement the techniques presented in the following
chapters. Before continuing with the tutorials and description of the libraries used in
this book, we would like to clarify the main concepts of the machine-learning field,
and give a practical example of how a machine-learning algorithm can predict useful
information in a real context.

General machine-learning concepts
In this book, the most relevant machine-learning algorithms are going to be
discussed and used in exercises to make you familiar with them. In order to explain
these algorithms and to understand the content of this book, there are a few general
concepts we need to visit that are going to be described hereafter.

First of all, a good definition of machine learning is the subfield of computer
science that has been developed from the fields of pattern recognition, artificial
intelligence, and computational learning theory. Machine learning can also be
seen as a data-mining tool, which focuses more on the data analysis aspects to
understand the data provided. The purpose of this discipline is the development
of programs, which are able to learn from previously seen data, through tunable
parameters (usually arrays of double precision values), that are designed to be
adjusted automatically to improve the resulting predictions. In this way, computers
can predict a behavior, generalizing the underlying structure of the data, instead of
just storing (or retrieving) the values like usual database systems. For this reason,
machine learning is associated with computational statics, which also attempt to
predict a behavior based on previous data. Common industrial applications of
machine-learning algorithms are spam filtering, search engines, optical character
recognition, and computer vision. Now that we have defined the discipline, we can
describe the terminology used in each machine-learning problem, in more detail.

Chapter 1

[3]

Any learning problem starts with a data set of n samples, which are used to predict
the properties of the future unknown data. Each sample is typically composed of
more than a single value so it is a vector. The components of this vector are called
features. For example, imagine predicting the price of a second-hand car based on
its characteristics: year of fabrication, color, engine size, and so on. Each car i in the
dataset will be a vector of features x(i) that corresponds to its color, engine size,
and many others. In this case, there is also a target (or label) variable associated
with each car i, y(i) which is the second-hand car price. A training example is formed
by a pair (x(i), y(i)) and therefore the complete set of N data points used to learn
is called a training dataset {(x(i), y(i));i=1,…,N}. The symbol x will denote the space
of feature (input) values, and y the space of target (output) values. The machine-
learning algorithm chosen to solve the problem will be described by a mathematical
model, with some parameters to tune in the training set. After the training phase is
completed, the performance of the prediction is evaluated using another two sets:
validation and testing sets. The validation set is used to choose, among multiple
models, the one that returns the best results, while the testing set is usually used to
determine the actual precision of the chosen model. Typically the dataset is divided
into 50% training set, 25% validation set, and 25% testing set.

The learning problems can be divided in two main categories (both of which are
extensively covered in this book):

• Unsupervised learning: The training dataset is given by input feature vectors
x without any corresponding label values. The usual objective is to find
similar examples within the data using clustering algorithms, or to project the
data from a high-dimensional space down to a few dimensions (blind signal
separations algorithms such as principal component analysis). Since there is
usually no target value for each training example, it is not possible to evaluate
errors of the model directly from the data; you need to use a technique that
evaluates how the elements within each cluster are similar to each other and
different from the other cluster's members. This is one of the major differences
between unsupervised learning and supervised learning.

Introduction to Practical Machine Learning Using Python

[4]

• Supervised learning: Each data sample is given in a pair consisting of an
input feature vector and a label value. The task is to infer the parameters
to predict the target values of the test data. These types of problems can be
further divided into:

 ° Classification: The data targets belong to two or more classes, and
the goal is to learn how to predict the class of unlabeled data from
the training set. Classification is a discrete (as opposed to continuous)
form of supervised learning, where the label has a limited number
of categories. A practical example of the classification problem is
the handwritten digit recognition example, in which the objective
is to match each feature vector to one of a finite number of discrete
categories.

 ° Regression: The label is a continuous variable. For example, the
prediction of the height of a child based on his age and weight is a
regression problem.

We are going to focus on unsupervised learning methods in Chapter 2, Machine
Learning Techniques: Unsupervised Learning, while the most relevant supervised
learning algorithms are discussed in Chapter 3, Supervised Machine Learning. Chapter 4,
Web Mining Techniques will approach the field of web-mining techniques that can also
be considered as both supervised and unsupervised methods. The recommendation
systems, which are again part of the supervised learning category, are described in
Chapter 5, Recommendation Systems. The Django web framework is then introduced
in Chapter 6, Getting Started with Django, and then an example of the recommendation
system (using both the Django framework and the algorithms explained in Chapter 5,
Recommendation Systems) is detailed in Chapter 7, Movie Recommendation System Web
Application. We finish the book with an example of a Django web-mining application,
using some of the techniques learned in Chapter 4, Web Mining Techniques. By the
end of the book you should be able to understand the different machine-learning
methods and be able to deploy them in a real working web application using Django.

We continue the chapter by giving an example of how machine learning can be used
in real business problems and in tutorials for Python libraries (NumPy, pandas, and
matplotlib), which are essential for putting the algorithms learned in each of the
following chapters into practice.

Chapter 1

[5]

Machine-learning example
To explain further what machine learning can do with real data, we consider the
following example (the following code is available in the author's GitHub book
folder https://github.com/ai2010/machine_learning_for_the_web/tree/
master/chapter_1/). We have taken the Internet Advertisements Data Set from
the UC Irvine Machine Learning Repository (http://archive.ics.uci.edu). Web
advertisements have been collected from various web pages, and each of them has
been transformed into a numeric feature's vector. From the ad.names file we can
see that the first three features represent the image size in the page, and the other
features are related to the presence of specific words or phrases on the URL of the
image or in the text (1558 features in total). The labels values are either ad or nonad,
depending on whether the page has an advert or not. As an example, a web page in
ad.data is given by:

125, 125,, 1. 0, 1, 0, ad.

Based on this data, a classical machine-learning task is to find a model to predict
which pages are adverts and which are not (classification). To start with, we consider
the data file ad.data which contains the full feature's vectors and labels, but it has
also missing values indicated with a ?. We can use the pandas Python library to
transform the? to -1 (see next paragraph for a full tutorial on the pandas library):

import pandas as pd

df = pd.read_csv('ad-dataset/ad.data',header=None)

df=df.replace({'?': np.nan})

df=df.replace({' ?': np.nan})

df=df.replace({' ?': np.nan})

df=df.replace({' ?': np.nan})

df=df.replace({' ?': np.nan})

df=df.fillna(-1)

A DataFrame is created with the data from the ad.data file, and each ? is first
replaced with the an value (replace function), then with -1 (the fillna function).
Now each label has to be transformed into a numerical value (and so do all the other
values in the data):

adindices = df[df.columns[-1]]== 'ad.'

df.loc[adindices,df.columns[-1]]=1

nonadindices = df[df.columns[-1]]=='nonad.'

df.loc[nonadindices,df.columns[-1]]=0

df[df.columns[-1]]=df[df.columns[-1]].astype(float)

df.apply(lambda x: pd.to_numeric(x))

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_1/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_1/
http://archive.ics.uci.edu

Introduction to Practical Machine Learning Using Python

[6]

Each ad. label has been transformed into 1 while the nonad. values have been
replaced by 0. All the columns (features) need to be numeric and float types (using
the astype function and the to_numeric function through a lambda function).

We want to use the Support Vector Machine (SVM) algorithm provided by the
scikit-learn library (see Chapter 3, Supervised Machine Learning) to predict 20% of
the labels in the data. First, we split the data into two sets: a training set (80%) and a
test set (20%):

import numpy as np

dataset = df.values[:,:]

np.random.shuffle(dataset)

data = dataset[:,:-1]

labels = dataset[:,-1].astype(float)

ntrainrows = int(len(data)*.8)

train = data[:ntrainrows,:]

trainlabels = labels[:ntrainrows]

test = data[ntrainrows:,:]

testlabels = labels[ntrainrows:]

Using the libraries provided by Numpy (a tutorial is provided in the next
paragraph), the data are shuffled (function random.shuffle) before being split to
assure the rows in the two sets are randomly selected. The -1 notation indicates the
last column of the array is not considered.

Now we train our SVM model using the training data:

from sklearn.svm import SVC

clf = SVC(gamma=0.001, C=100.)

clf.fit(train, trainlabels)

We have defined our clf variable that declares the SVM model with the values of
the parameters. Then the function fit is called to fit the model with the training data
(see Chapter 3, Supervised Machine Learning for further details). The mean accuracy in
predicting the 20% test cases is performed as follows, using the score function:

score=clf.score(test,testlabels)

print 'score:',score

Chapter 1

[7]

Running the preceding code (the full code is available in the chapter_1 folder of the
author's GitHub account) gives a result of 92% accuracy, which means 92% of the test
cases of the predicted label agree with the true label. This is the power of machine
learning: from previous data, we are able to infer if a page will contain an advert
or not. To achieve that, we have essentially prepared and manipulated the data
using the NumPy and pandas libraries, and then applied the SVM algorithm on the
cleaned data using the scikit-learn library. Since this book will largely employ the
numpy and pandas (and some matplotlib) libraries, the following paragraphs will
discuss how to install the libraries and how the data can be manipulated (or even
created) using these libraries.

Installing and importing a module (library)
Before continuing with the discussion on the libraries, we need to clarify how to
install each module we want to use in Python. The usual way to install a module is
through the pip command using the terminal:

>>> sudo pip install modulename

The module is then usually imported into the code using the statement:

import numpy as np

Here, numpy is the library name and np is the reference name from which any
function X in the library can be accessed using np.X instead of numpy.X. We are
going to assume that all the libraries (scipy, scikit-learn, pandas, scrapy, nltk,
and all others) have been be installed and imported in this way.

Introduction to Practical Machine Learning Using Python

[8]

Preparing, manipulating and visualizing
data – NumPy, pandas and matplotlib
tutorials
Most of the data comes in a very unpractical form for applying machine-learning
algorithms. As we have seen in the example (in the preceding paragraph), the data
can have missing values or non-numeric columns, which are not ready to be fed into
any machine-learning technique. Therefore, a machine-learning professional usually
spends a large amount of time cleaning and preparing the data to transform it into
a form suitable for further analysis or visualization. This section will teach how to
use numpy and pandas to create, prepare, and manipulate data in Python while the
matplotlib paragraph will provide the basis of plotting a graph in Python. The
Python shell has been used to discuss the NumPy tutorial, although all versions
of the code in the IPython notebook, and plain Python script, are available in the
chapter_1 folder of the author's GitHub. pandas and matplotlib are discussed using
the IPython notebook.

Using NumPy
Numerical Python or NumPy, is an open source extension library for Python, and
is a fundamental module required for data analysis and high performance scientific
computing. The library features support Python for large, multi-dimensional
arrays and matrices, and it provides precompiled functions for numerical routines.
Furthermore, it provides a large library of mathematical functions to manipulate
these arrays.

The library provides the following functionalities:

• Fast multi-dimensional array for vector arithmetic operations
• Standard mathematical functions for fast operations on entire arrays of data
• Linear algebra
• Sorting, unique, and set operations
• Statistics and aggregating data

The main advantage of NumPy is the speed of the usual array operations compared
to standard Python operations. For instance, a traditional summation of 10000000
elements:

>>> def sum_trad():

>>> start = time.time()

Chapter 1

[9]

>>> X = range(10000000)

>>> Y = range(10000000)

>>> Z = []

>>> for i in range(len(X)):

>>> Z.append(X[i] + Y[i])

>>> return time.time() - start

Compare this to the Numpy function:

>>> def sum_numpy():

>>> start = time.time()

>>> X = np.arange(10000000)

>>> Y = np.arange(10000000)

>>> Z=X+Y

>>> return time.time() - start

>>> print 'time sum:',sum_trad(),' time sum numpy:',sum_numpy()

time sum: 2.1142539978 time sum numpy: 0.0807049274445

The time used is 2.1142539978 and 0.0807049274445 respectively.

Arrays creation
The array object is the main feature provided by the NumPy library. Arrays are the
equivalent of Python lists, but each element of an array has the same numerical type
(typically float or int). It is possible to define an array casting from a list using the
function array by using the following code. Two arguments are passed to it: the list
to be converted and the type of the new generated array:

>>> arr = np.array([2, 6, 5, 9], float)

>>> arr

array([2., 6., 5., 9.])

>>> type(arr)

<type 'numpy.ndarray'>

And vice versa, an array can be transformed into a list by the following code:

>>> arr = np.array([1, 2, 3], float)

>>> arr.tolist()

[1.0, 2.0, 3.0]

>>> list(arr)

[1.0, 2.0, 3.0]

Introduction to Practical Machine Learning Using Python

[10]

Assigning an array to a new one will not create a new copy in memory,
it will just link the new name to the same original object.

To create a new object from an existing one, the copy function needs to be used:

>>> arr = np.array([1, 2, 3], float)

>>> arr1 = arr

>>> arr2 = arr.copy()

>>> arr[0] = 0

>>> arr

array([0., 2., 3.])

>>> arr1

array([0., 2., 3.])

>>> arr2

array([1., 2., 3.])

Alternatively an array can be filled with a single value in the following way:

>>> arr = np.array([10, 20, 33], float)

>>> arr

array([10., 20., 33.])

>>> arr.fill(1)

>>> arr

array([1., 1., 1.])

Arrays can also be created randomly using the random submodule. For example,
giving the length of an array as an input of the function, permutation will find a
random sequence of integers:

>>> np.random.permutation(3)

array([0, 1, 2])

Another method, normal, will draw a sequence of numbers from a normal
distribution:

>>> np.random.normal(0,1,5)

array([-0.66494912, 0.7198794 , -0.29025382, 0.24577752, 0.23736908])

Chapter 1

[11]

0 is the mean of the distribution while 1 is the standard deviation and 5 is the
number of array's elements to draw. To use a uniform distribution, the random
function will return numbers between 0 and 1 (not included):

>>> np.random.random(5)

array([0.48241564, 0.24382627, 0.25457204, 0.9775729 , 0.61793725])

NumPy also provides a number of functions for creating two-dimensional arrays
(matrices). For instance, to create an identity matrix of a given dimension, the
following code can be used:

>>> np.identity(5, dtype=float)

array([[1., 0., 0., 0., 0.],

 [0., 1., 0., 0., 0.],

 [0., 0., 1., 0., 0.],

 [0., 0., 0., 1., 0.],

 [0., 0., 0., 0., 1.]])

The eye function returns matrices with ones along the kth diagonal:

>>> np.eye(3, k=1, dtype=float)

array([[0., 1., 0.],

 [0., 0., 1.],

 [0., 0., 0.]])

The most commonly used functions to create new arrays (1 or 2 dimensional) are
zeros and ones which create new arrays of specified dimensions filled with these
values. These are:

>>> np.ones((2,3), dtype=float)

array([[1., 1., 1.],

 [1., 1., 1.]])

>>> np.zeros(6, dtype=int)

array([0, 0, 0, 0, 0, 0])

The zeros_like and ones_like functions instead create a new array with the same
type as an existing one, with the same dimensions:

>>> arr = np.array([[13, 32, 31], [64, 25, 76]], float)

>>> np.zeros_like(arr)

array([[0., 0., 0.],

 [0., 0., 0.]])

Introduction to Practical Machine Learning Using Python

[12]

>>> np.ones_like(arr)

array([[1., 1., 1.],

 [1., 1., 1.]])

Another way to create two-dimensional arrays is to merge one-dimensional arrays
using vstack (vertical merge):

>>> arr1 = np.array([1,3,2])

>>> arr2 = np.array([3,4,6])

>>> np.vstack([arr1,arr2])

array([[1, 3, 2],

 [3, 4, 6]])

The creation using distributions are also possible for two-dimensional arrays,
using the random submodule. For example, a random matrix 2x3 from a uniform
distribution between 0 and 1 is created by the following command:

>>> np.random.rand(2,3)

array([[0.36152029, 0.10663414, 0.64622729],

 [0.49498724, 0.59443518, 0.31257493]])

Another often used distribution is the multivariate normal distribution:

>>> np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]], size=[5,])

array([[11.8696466 , -0.99505689],

 [10.50905208, 1.47187705],

 [9.55350138, 0.48654548],

 [10.35759256, -3.72591054],

 [11.31376171, 2.15576512]])

The list [10,0] is the mean vector, [[3, 1], [1, 4]] is the covariance matrix and
5 is the number of samples to draw.

Method Description
tolist Function to transform NumPy array to list
copy Function to copy NumPy array values
ones, zeros Functions to create an array of zeros or ones
zeros_like, ones_like Functions to create two-dimensional arrays with same

shape of the input list
fill Function to replace an array entries with a certain value
identity Function to create identity matrix

Chapter 1

[13]

Method Description
eye Function to create a matrix with one entry along a kth

diagonal
vstack Function to merge arrays into two-dimensional arrays
random submodule: random,
permutation, normal,
rand, multivariate_
normal, and others

Random submodule create arrays drawing samples from
distributions

Array manipulations
All the usual operations to access, slice, and manipulate a Python list can be applied
in the same way, or in a similar way to an array:

>>> arr = np.array([2., 6., 5., 5.])

>>> arr[:3]

array([2., 6., 5.])

>>> arr[3]

5.0

>>> arr[0] = 5.

>>> arr

array([5., 6., 5., 5.])

The unique value can be also selected using unique:

>>> np.unique(arr)

array([5., 6.])

The values of the array can also be sorted using sort and its indices with argsort:

>>> np.sort(arr)

array([2., 5., 5., 6.])

>>> np.argsort(arr)

array([0, 2, 3, 1])

It is also possible to randomly rearrange the order of the array's elements using the
shuffle function:

>>> np.random.shuffle(arr)

>>> arr

array([2., 5., 6., 5.])

Introduction to Practical Machine Learning Using Python

[14]

NumPy also has a built-in function to compare arrays array_equal:

>>> np.array_equal(arr,np.array([1,3,2]))

False

Multi-dimensional arrays, however, differ from the list. In fact, a list of dimensions is
specified using the comma (instead of a bracket for list). For example, the elements of
a two-dimensional array (that is a matrix) are accessed in the following way:

>>> matrix = np.array([[4., 5., 6.], [2, 3, 6]], float)

>>> matrix

array([[4., 5., 6.],

 [2., 3., 6.]])

>>> matrix[0,0]

4.0

>>> matrix[0,2]

6.0

Slicing is applied on each dimension using the colon : symbol between the initial
value and the end value of the slice:

>>> arr = np.array([[4., 5., 6.], [2., 3., 6.]], float)

>>> arr[1:2,2:3]

array([[6.]])

While a single : means all the elements along that axis are considered:

>>> arr[1,:]

array([2, 3, 6])

>>> arr[:,2]

array([6., 6.])

>>> arr[-1:,-2:]

array([[3., 6.]])

One-dimensional arrays can be obtained from multi-dimensional arrays using the
flatten function:

>>> arr = np.array([[10, 29, 23], [24, 25, 46]], float)

>>> arr

array([[10., 29., 23.],

 [24., 25., 46.]])

>>> arr.flatten()

array([10., 29., 23., 24., 25., 46.])

Chapter 1

[15]

It is also possible to inspect an array object to obtain information about its content.
The size of an array is found using the attribute shape:

>>> arr.shape

(2, 3)

In this case, arr is a matrix of two rows and three columns. The dtype property
returns the type of values are stored within the array:

>>> arr.dtype

dtype('float64')

float64 is a numeric type to store double-precision (8-byte) real numbers (similar to
float type in regular Python). There are also other data types such as int64, int32,
string, and an array can be converted from one type to another. For example:

>>>int_arr = matrix.astype(np.int32)

>>>int_arr.dtype

dtype('int32')

The len function returns the length of the first dimension when used on an array:

>>>arr = np.array([[4., 5., 6.], [2., 3., 6.]], float)

>>> len(arr)

2

Like in Python for loop, the in word can be used to check if a value is contained in
an array:

>>> arr = np.array([[4., 5., 6.], [2., 3., 6.]], float)

>>> 2 in arr

True

>>> 0 in arr

False

An array can be manipulated in such a way that its elements are rearranged in
different dimensions using the function reshape. For example, a matrix with eight
rows and one column can be reshaped to a matrix with four rows and two columns:

>>> arr = np.array(range(8), float)

>>> arr

array([0., 1., 2., 3., 4., 5., 6., 7.])

>>> arr = arr.reshape((4,2))

>>> arr

Introduction to Practical Machine Learning Using Python

[16]

array([[0., 1.],

 [2., 3.],

 [4., 5.],

 [6., 7.]])

>>> arr.shape

(4, 2)

In addition, transposed matrices can be created; that is to say, a new array with the
final two dimensions switched can be obtained using the transpose function:

>>> arr = np.array(range(6), float).reshape((2, 3))

>>> arr

array([[0., 1., 2.],

 [3., 4., 5.]])

>>> arr.transpose()

array([[0., 3.],

 [1., 4.],

 [2., 5.]])

Arrays can also be transposed using the T attribute:

>>> matrix = np.arange(15).reshape((3, 5))

>>> matrix

array([[0, 1, 2, 3, 4],

 [5, 6, 7, 8, 9],

 [10, 11, 12, 13, 14]])

>>>matrix .T

array([[0, 5, 10],

 [1, 6, 11],

 [2, 6, 12],

 [3, 8, 13],

 [4, 9, 14]])

Another way to reshuffle the elements of an array is to use the newaxis constant to
increase the dimensionality:

>>> arr = np.array([14, 32, 13], float)

>>> arr

array([14., 32., 13.])

>> arr[:,np.newaxis]

Chapter 1

[17]

array([[14.],

 [32.],

 [13.]])

>>> arr[:,np.newaxis].shape

(3,1)

>>> arr[np.newaxis,:]

array([[14., 32., 13.]])

>>> arr[np.newaxis,:].shape

(1,3)

In this example, in each case the new array has two dimensions, the one generated
by newaxis has a length of one.

Joining arrays is an operation performed by the concatenate function in NumPy,
and the syntax depends on the dimensionality of the array. Multiple one-dimensional
arrays can be chained, specifying the arrays to be joined as a tuple:

>>> arr1 = np.array([10,22], float)

>>> arr2 = np.array([31,43,54,61], float)

>>> arr3 = np.array([71,82,29], float)

>>> np.concatenate((arr1, arr2, arr3))

array([10., 22., 31., 43., 54., 61., 71., 82., 29.])

Using a multi-dimensional array, the axis along which multiple arrays are
concatenated needs to be specified. Otherwise, NumPy concatenates along
the first dimension by default:

>>> arr1 = np.array([[11, 12], [32, 42]], float)

>>> arr2 = np.array([[54, 26], [27,28]], float)

>>> np.concatenate((arr1,arr2))

array([[11., 12.],

 [32., 42.],

 [54., 26.],

 [27., 28.]])

>>> np.concatenate((arr1,arr2), axis=0)

array([[11., 12.],

 [32., 42.],

 [54., 26.],

 [27., 28.]])

Introduction to Practical Machine Learning Using Python

[18]

>>> np.concatenate((arr1,arr2), axis=1)

array([[11., 12., 54., 26.],

 [32., 42., 27., 28.]])

It is common to save a large amount of data as a binary file instead of using the direct
format. NumPy provides a function, tostring, to convert an array to a binary string.
Of course there's also the inverse operation, where a conversion of a binary string to
an array is supported using the fromstring routine. For example:

>>> arr = np.array([10, 20, 30], float)

>>> str = arr.tostring()

>>> str

'\x00\x00\x00\x00\x00\x00$@\x00\x00\x00\x00\x00\x004@\x00\x00\x00\x00\
x00\x00>@'

>>> np.fromstring(str)

array([10., 20., 30.])

Method Description
unique Function to select only unique values from an array
random, shuffle Function to randomly rearrange the elements of an array
sort, argsort sort sorts the order of an array's values in increasing order,

while argsort orders the array's indices such that the array gets
arranged in an increasing order

array_equal Compare two arrays and return a True id (they are equal False
otherwise)

flatten Transform a two-dimensional array into a one-dimensional array
transpose Calculate the transpose of a two-dimensional array
reshape Rearrange entries of a two-dimensional array into a different

shape
concatenate Concatenate two -dimensional arrays into one matrix
fromstring,
tostring

Convert an array to a binary string

Array operations
Common mathematical operations are obviously supported in NumPy. For example:

>>> arr1 = np.array([1,2,3], float)

>>> arr2 = np.array([1,2,3], float)

>>> arr1 + arr2

array([2.,4., 6.])

Chapter 1

[19]

>>> arr1–arr2

array([0., 0., 0.])

>>> arr1 * arr2

array([51, 4., 9.])

>>> arr2 / arr1

array([1., 1., 1.])

>>> arr1 % arr2

array([0., 0., 0.])

>>> arr2**arr1

array([1., 4., 9.])

Since any operation is applied element wise, the arrays are required to have the same
size. If this condition is not satisfied, an error is returned:

>>> arr1 = np.array([1,2,3], float)

>>> arr2 = np.array([1,2], float)

>>> arr1 + arr2

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: shape mismatch: objects cannot be broadcast to a single shape

The error states that the objects cannot be broadcasted because the only way
to perform an operation with arrays of different size is called broadcasting. This
means the arrays have a different number of dimensions, and the array with less
dimensions will be repeated until it matches the dimensions of the other array.
Consider the following:

>>> arr1 = np.array([[1, 2], [3, 4], [5, 6]], float)

>>> arr2 = np.array([1, 2], float)

>>> arr1

array([[1., 2.],

 [3., 4.],

 [5., 6.]])

>>> arr2

array([1., 2.])

>>> arr1 + arr2

array([[2., 4.],

 [4., 6.],

 [6., 8.]])

Introduction to Practical Machine Learning Using Python

[20]

The array arr2 was broadcasted to a two-dimensional array that matched the size
of arr1. Therefore, arr2 was repeated for each dimension of arr1, equivalent to
the array:

array([[1., 2.],[1., 2.],[1., 2.]])

If we want to make the way an array is broadcasted explicit, the newaxis constant
allows us to specify how we want to broadcast:

>>> arr1 = np.zeros((2,2), float)

>>> arr2 = np.array([1., 2.], float)

>>> arr1

array([[0., 0.],[0., 0.]])

>>> arr2

array([1., 2.])

>>> arr1 + arr2

array([[1., 2.],[1., 2.]])

>>> arr1 + arr2[np.newaxis,:]

array([[1., 2.],[1., 2.]])

>>> arr1 + arr2[:,np.newaxis]

array([[1.,1.],[2., 2.]])

Unlike Python lists, arrays can be queried using conditions. A typical example is to
use Boolean arrays to filter the elements:

>>> arr = np.array([[1, 2], [5, 9]], float)

>>> arr >= 7

array([[False, False],

[False, True]], dtype=bool)

>>> arr[arr >= 7]

array([9.])

Multiple Boolean expressions can be used to subset the array:

>>> arr[np.logical_and(arr > 5, arr < 11)]

>>> arr

array([9.])

Chapter 1

[21]

Arrays of integers can be used to specify the indices to select the elements of another
array. For example:

>>> arr1 = np.array([1, 4, 5, 9], float)

>>> arr2 = np.array([0, 1, 1, 3, 1, 1, 1], int)

>>> arr1[arr2]

array([1., 4., 4., 9., 4., 4., 4.])

The arr2 represents the ordered indices to select elements from array arr1: the
zeroth, first, first, third, first, first, and first elements of arr1, in that order have been
selected. Also lists can be used for the same purpose:

>>> arr = np.array([1, 4, 5, 9], float)

>>> arr[[0, 1, 1, 3, 1]]

array([1., 4., 4., 9., 4.])

In order to replicate the same operation with multi-dimensional arrays, multiple
one-dimensional integer arrays have to be put into the selection bracket, one
for each dimension.

The first selection array represents the values of the first index in the matrix entries,
while the values on the second selection array represent the column index of the
matrix entries. The following example illustrates the idea:

>>> arr1 = np.array([[1, 2], [5, 13]], float)

>>> arr2 = np.array([1, 0, 0, 1], int)

>>> arr3 = np.array([1, 1, 0, 1], int)

>>> arr1[arr2,arr3]

array([13., 2., 1., 13.])

The values on arr2 are the first index (row) on arr1 entries while arr3 are the
second index (column) values, so the first chosen entry on arr1 corresponds to row 1
column 1 which is 13.

The function take can be used to apply your selection with integer arrays, and it
works in the same way as bracket selection:

>>> arr1 = np.array([7, 6, 6, 9], float)

>>> arr2 = np.array([1, 0, 1, 3, 3, 1], int)

>>> arr1.take(arr2)

array([6., 7., 6., 9., 9., 6.])

Introduction to Practical Machine Learning Using Python

[22]

Subsets of a multi-dimensional array can be selected along a given dimension
specifying the axis argument on the take function:

>>> arr1 = np.array([[10, 21], [62, 33]], float)

>>> arr2 = np.array([0, 0, 1], int)

>>> arr1.take(arr2, axis=0)

array([[10., 21.],

 [10., 21.],

 [62., 33.]])

>>> arr1.take(arr2, axis=1)

array([[10., 10., 21.],

 [62., 62., 33.]])

The put function is the opposite of the take function, and it takes values from an
array and puts them at specified indices in the array that calls the put method:

>>> arr1 = np.array([2, 1, 6, 2, 1, 9], float)

>>> arr2 = np.array([3, 10, 2], float)

>>> arr1.put([1, 4], arr2)

>>> arr1

array([2., 3., 6., 2., 10., 9.])

We finish this section with the note that multiplication also remains element-wise for
two-dimensional arrays (and does not correspond to matrix multiplication):

>>> arr1 = np.array([[11,22], [23,14]], float)

>>> arr2 = np.array([[25,30], [13,33]], float)

>>> arr1 * arr2

array([[275., 660.],

 [299., 462.]])

Method Description
take Select values of an array from indices given by a second array
put Replace the values in an array with values of another array at given positions

Chapter 1

[23]

Linear algebra operations
The most common operations between matrices is the inner product of a matrix with
its transpose, XT X, using np.dot:

>>> X = np.arange(15).reshape((3, 5))

>>> X

array([[0, 1, 2, 3, 4],

 [5, 6, 7, 8, 9],

 [10, 11, 12, 13, 14]])

>>> X.T

array([[0, 5, 10],

 [1, 6, 11],

 [2, 6, 12],

 [3, 8, 13],

 [4, 9, 14]])

>>>np.dot(X .T, X)#X^T X

array([[2.584 , 1.8753, 0.8888],

 [1.8753, 6.6636, 0.3884],

 [0.8888, 0.3884, 3.9781]])

There are functions to directly calculate the different types of product (inner, outer,
and cross) on arrays (that is matrices or vectors).

For one-dimensional arrays (vectors) the inner product corresponds to the
dot product:

>>> arr1 = np.array([12, 43, 10], float)

>>> arr2 = np.array([21, 42, 14], float)

>>> np.outer(arr1, arr2)

array([[252., 504., 168.],

 [903., 1806., 602.],

 [210., 420., 140.]])

>>> np.inner(arr1, arr2)

2198.0

>>> np.cross(arr1, arr2)

array([182., 42., -399.])

Introduction to Practical Machine Learning Using Python

[24]

NumPy also contains a sub-module, linalg that has a series of functions to perform
linear algebra calculations over matrices. The determinant of a matrix can be
computed as:

>>> matrix = np.array([[74, 22, 10], [92, 31, 17], [21, 22, 12]], float)

>>> matrix

array([[74., 22., 10.],

 [92., 31., 17.],

 [21., 22., 12.]])

>>> np.linalg.det(matrix)

-2852.0000000000032

Also the inverse of a matrix can be generated using the function inv:

>>> inv_matrix = np.linalg.inv(matrix)

>>> inv_matrix

array([[0.00070126, 0.01542777, -0.02244039],

 [0.26192146, -0.23772791, 0.11851332],

 [-0.48141655, 0.4088359 , -0.09467041]])

>>> np.dot(inv_matrix,matrix)

array([[1.00000000e+00, 2.22044605e-16, 4.77048956e-17],

 [-2.22044605e-15, 1.00000000e+00, 0.00000000e+00],

 [-3.33066907e-15, -4.44089210e-16, 1.00000000e+00]])

It is straightforward to calculate the eigenvalues and eigenvectors of a matrix:

>>> vals, vecs = np.linalg.eig(matrix)

>>> vals

array([107.99587441, 11.33411853, -2.32999294])

>>> vecs

array([[-0.57891525, -0.21517959, 0.06319955],

 [-0.75804695, 0.17632618, -0.58635713],

 [-0.30036971, 0.96052424, 0.80758352]])

Method Description
dot Dot product between two arrays
inner Inner product between multi-dimensional arrays

Chapter 1

[25]

Method Description
linalg module with functions
such as: linalg.det, linalg.
inv, linalg.eig

linalg is a module that collects several linear algebra
methods among which are the determinant of a
matrix (det), the inverse of a matrix (inv) and the
eigenvalues, eigenvectors of a matrix (eig)

Statistics and mathematical functions
NumPy provides a set of functions to compute statistics of the data contained in
the arrays. Operations of the aggregation type, such as sum, mean, median, and
standard deviation are available as an attribute of an array. For example, creating
a random array (from a uniform distribution), it is possible to calculate the mean in
two ways:

>>> arr = np.random.rand(8, 4)

>>> arr.mean()

0.45808075801881332

>>> np.mean(arr)

0.45808075801881332

>>> arr.sum()

14.658584256602026

The full list of functions is shown in the table below:

Method Description
mean mean of the elements. If the array is empty, the mean is set to NaN by

default.
std, var Functions to calculate the standard deviation (std) and variance

(var) of the array. An optional degree of freedom parameter can be
specified (default is the length of the array).

min, max Functions to determine the minimum (min) and maximum (max)
value contained in the array.

argmin, argmax These functions return the index of the smallest element (argmin)
and largest element (argmax).

Introduction to Practical Machine Learning Using Python

[26]

Understanding the pandas module
pandas is a powerful Python module that contains a wide range of functions to
analyze data structures. pandas relies on the NumPy library and it is designed to
make data analysis operations easy and fast. This module offers high performance
with respect to normal Python functions, especially for reading or writing files or
making databases; pandas is the optimal choice to perform data manipulation. The
following paragraphs discuss the main methods to explore the information contained
in the data, and how to perform manipulations on it. We start by describing how
data is stored in pandas and how to load data into it.

Throughout the rest of the book, we use the following import
conventions for pandas:

 import pandas as pd

Therefore, whenever code contains the letters pd, it is referring to
pandas.

Exploring data
In order to introduce the database structure, called DataFrame, into pandas, we need
to describe the one-dimensional array-like object containing data of any NumPy data
type and an associated array of data label called its index. This structure is called
Series and a simple example is:

Chapter 1

[27]

The obj object is composed of two values, the index on the left and the associated
value on the right. Given that the length of the data is equal to N, the default
indexing goes from 0 to N-1. The array and index objects of the Series can be
obtained using its values and index attributes, respectively:

The indexing is preserved by applying NumPy array operations (such as scalar
multiplication, filtering with a Boolean array, or applying math functions):

A Python dictionary can be transformed into a Series but the indexing will
correspond to the key values:

Introduction to Practical Machine Learning Using Python

[28]

It is possible to specify a separated list as an index:

In this case, the last index value, g, has not got an associated object value, so by
default a Not a Number (NaN) is inserted.

The terms of missing or NA will be used to refer to missing data. To find the missing
data the isnull and notnull functions can be used in pandas:

We can now start loading a CSV file into a DataFrame structure. A DataFrame
represents a data structure containing an ordered set of columns, each of which
can be a different value type (numeric, string, Boolean, and others). The DataFrame
has two indices (a row and column index) and it can be thought of as a dictionary
of Series that share the same index (column). For the purpose of this tutorial, we
are using the data contained in the ad.data file stored in the http://archive.
ics.uci.edu website (at http://archive.ics.uci.edu/ml/datasets/
Internet+Advertisements) as already explained in the preceding machine-learning
example.

http://archive.ics.uci.edu
http://archive.ics.uci.edu
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

Chapter 1

[29]

The data is loaded in the following way using the terminal (in this case the path is
data_example/ad-dataset/ad-data):

This file does not have a header (set to none) so the column's names are numbers
and we can get a summary of the DataFrame by using the describe function on the
object data:

This summarizes quantitative information. We can see that there are 1554 numeric
columns (indicated by numbers since there is no header) and 3279 rows (called
count for each column). Each of the columns has a list of statistical parameters
(mean, standard deviation, min, max, and percentiles) that helps to obtain an initial
estimate of the quantitative information contained in the data.

It is possible to obtain the column names using the columns property:

Introduction to Practical Machine Learning Using Python

[30]

So all the columns names are of type int64 and the following command returns the
actual types of all the columns:

The first four columns and the label (last column) are of the type object, while the
others are of the type int64. Columns can be accessed in two ways. The first method
is by specifying the column name like the key in a dictionary:

Multiple columns can be obtained by specifying a list of them with the column names:

Chapter 1

[31]

The other way to access columns is by using the dot syntax, but it will only work if
the column name could also be a Python variable name (that is no spaces), if it is not
the same as the DataFrame property or function name (such as count or sum), and
the name is of the string type (not int64 like in this example).

To briefly gain an insight into the content of a DataFrame, the function head() can
be used. The first five items in a column (or the first five rows in the DataFrame) are
returned by default:

The opposite method is tail(), which returns the last five items or rows by default.
Specifying a number on the tail() or head() function, will return the first n items
in the chosen column:

It is also possible to use the Python's regular slicing syntax to obtain a certain
number of rows of the DataFrame:

This example shows only rows from 1 to 3.

Introduction to Practical Machine Learning Using Python

[32]

Manipulate data
It is possible to select row(s) in different ways, such as specifying the index or the
condition as follows:

Or specifying multiple conditions:

The data returned are web pages with feature 1 greater than 0 and containing
an advert.

The ix method allows us to select rows specifying the desired index:

Chapter 1

[33]

Alternatively the function iloc can be used:

The difference is that ix works on labels in the index column and iloc works on the
positions in the index (so it only takes integers). Therefore, in this example, ix finds
all the rows from 0 until the label 3 appears, while the iloc function returns the
rows in the first 3 positions in the data frame. There is a third function to access data
in a DataFrame, loc. This function looks at the index names associated with the rows
and it returns their values. For example:

Note that this function behaves differently with respect to the normal slicing in
Python because both starting and ending rows are included in the result (the row
with index 3 is included in the output).

It is possible to set an entire column to a value:

To also set a specific cell value to the desired values:

Introduction to Practical Machine Learning Using Python

[34]

Or the entire row to a set of values (random values between 0 and 1 and ad. label in
this example):

After transforming an array of values in a Series object, it is possible to append a
row at the end of the DataFrame:

Alternatively, the loc function (as in NumPy) can be used to add a row at the
last line:

It is easy to add a column in the DataFrame by simply assigning the new column
name to a value:

In this case, the new column has all the entries assigned to test value. Similarly, the
column can be deleted using the drop function:

Chapter 1

[35]

A dataset may contain duplicates for various reasons, so pandas provides the
method duplicated to indicate whether each row is a repetition or not:

More usefully, though, the drop_duplicates function returns a DataFrame with
only the unique values. For example, for the label the unique values are:

It is possible to transform the result into a list:

As we did in the machine-learning example, these labels can be transformed into
numeric values using the methods explained in the preceding example:

Introduction to Practical Machine Learning Using Python

[36]

The label column is still the object type:

So the column now can be converted into the float type:

The first four columns contain mixed values (strings, ?, and float numbers), so
we need to remove the string values to convert the columns into a numeric type.
We can use the function replace to substitute all the instances of ? (missing values)
with NaN:

Now we can handle these rows with missing data in two ways. The first method is
just to remove the lines with missing values using dropna:

Instead of removing the rows with missing data (which may lead to deleting
important information), the empty entries can be filled. For most purposes, a
constant value can be inserted in the empty cells with the fillna method:

Now that all the values are numeric the columns can be set to type float, applying
the astype function. Alternatively, we can apply a lambda function to convert each
column in the DataFrame to a numeric type:

Chapter 1

[37]

Each x instance is a column and the to_numeric function converts it to the closest
numeric type (float in this case).

For the sake of completeness of this tutorial, we want to show how two DataFrames
can be concatenated since this operation can be useful in real applications. Let's
create another small DataFrame with random values:

This new table with two rows can be merged with the original DataFrame using the
concat function placing the rows of data1 at the bottom of the data:

The number of rows of datatot is now increased by two rows with respect to data
(note that the number of rows is different from the beginning because we dropped
the rows with NaN).

Matplotlib tutorial
matplotlib.pyplot is a library that collects a series of methods to plot data similar
to MATLAB. Since the following chapters will employ this library to visualize some
results, a simple example here will explain all the matplotlib code you will see as
you continue in this book:

Introduction to Practical Machine Learning Using Python

[38]

After importing the library (as plt), the figure object is initialized (fig) and an
axis object is added (ax). Each line plotted into the ax object through the command
ax.plot() is called a handle. All the following instructions are then recorded
by matplotlib.pyplot and plotted in the figure object. In this case, the line in
green has been shown from the terminal and saved as a figure.png file, using the
commands plt.show() and fig.savefig() respectively. The result is equal to:

Example of simple plot

The next example illustrates a plot of several lines with different format styles in one
command using Numpy arrays:

Chapter 1

[39]

Example of plot with multiple lines

Note that the function get_legend_handles_labels() returns the list of handles
and labels stored in the object ax and they are passed to the function legend to be
plotted. The symbols 'r--', 'bs', and 'g^' refer to the shape of the points and their
color (red rectangles, blue squares, and green triangles respectively). The linewidth
parameter sets the thickness of the line while markersize sets the size of the dots.

Another useful plot to visualize the results is the scatter plot in which values for
typically two variables of a set of data (data generated using NumPy random
submodule) are displayed:

Introduction to Practical Machine Learning Using Python

[40]

The s option represents the size of the points and colors are the colors that
correspond to each set of points and the handles are passed directly into the
legend function (p1, p2, p3):

Scatter plot of randomly distributed points

For further details on how to use matplotlib we advise the reader to read online
material and tutorials such as http://matplotlib.org/users/pyplot_tutorial.
html.

http://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/users/pyplot_tutorial.html

Chapter 1

[41]

Scientific libraries used in the book
Throughout this book, certain libraries are necessary to implement the
machine-learning techniques discussed in each chapter. We are going to
briefly describe the most relevant libraries employed hereafter:

• SciPy is a collection of mathematical methods based on the NumPy array
objects. It is an open source project so it takes advantage of additional
methods continuously written from developers around the world. Python
software that employs a SciPy routine is part of advanced projects or
applications comparable to similar frameworks such as MATLAB, Octave or
RLab. There are a wide range of methods available from manipulating and
visualizing data functions to parallel computing routines that enhance the
versatility and potentiality of the Python language.

• scikit-learn (sklearn) is an open source machine learning module for
Python programming language. It implements various algorithms such as
clustering, classification, and regression including support vector machines,
Naive Bayes, Decision Trees, Random Forests, k-means, and Density
Based Spatial Clustering of Applications with Noise (DBSCAN) and it
interacts natively with numerical Python libraries such as NumPy and SciPy.
Although most of the routines are written in Python, some functions are
implemented in Cython to achieve better performance. For instance, support
vector machines and logistic regression are written in Cython wrapping
other external libraries (LIBSVM, LIBLINEAR).

• The Natural Language Toolkit (NLTK), is a collection of libraries and
functions for Natural Language Processing (NLP) for Python language
processing. NLTK is designed to support research and teaching on NLP and
related topics including artificial intelligence, cognitive science, information
retrieval, linguistics, and machine learning. It also features a series of text
processing routines for tokenization, stemming, tagging, parsing, semantic
reasoning, and classification. NLTK includes sample codes and sample data
and interfaces to more than 50 corpora and lexical databases.

• Scrapy is an open source web crawling framework for the Python
programming language. Originally designed for scraping websites, and as a
general purpose crawler, it is also suitable for extracting data through APIs.
The Scrapy project is written around spiders that act by providing a set of
instructions. It also features a web crawling shell that allows the developers
to test their concepts before actually implementing them. Scrapy is currently
maintained by Scrapinghub Ltd., a web scraping development and services
Company.

Introduction to Practical Machine Learning Using Python

[42]

• Django is a free and open source web application framework implemented
in Python following the model view controller architectural pattern. Django is
designed for creation of complex, database-oriented websites. It also allows
us to manage the application through an administrative interface, which
can create, read, delete, or update data used in the application. There are a
series of established websites that currently use Django, such as Pinterest,
Instagram, Mozilla, The Washington Times, and Bitbucket.

When to use machine learning
Machine learning is not magic and it may be not be beneficial to all data-related
problems. It is important at the end of this introduction to clarify when
machine-learning techniques are extremely useful:

• It is not possible to code the rules: a series of human tasks (to determine if an
e-mail is spam or not, for example) cannot be solved effectively using simple
rules methods. In fact, multiple factors can affect the solution and if rules
depend on a large number of factors it becomes hard for humans to manually
implement these rules.

• A solution is not scalable: whenever it is time consuming to manually
take decisions on certain data, the machine-learning techniques can scale
adequately. For example, a machine-learning algorithm can efficiently go
through millions of e-mails and determine if they are spam or not.

However, if it is possible to find a good target prediction, by simply using
mathematical rules, computations, or predetermined schemas that can be
implemented without needing any data-driven learning, these advanced
machine-learning techniques are not necessary (and you should not use them).

Chapter 1

[43]

Summary
In this chapter we introduced the basic machine-learning concepts and terminology
that will be used in the rest of the book. Tutorials of the most relevant libraries
(NumPy, pandas, and matplotlib) used by machine-learning professionals to
prepare, t manipulate, and visualize data have been also presented. A general
introduction of all the other Python libraries that will be used in the following
chapters has been also provided.

You should have a general knowledge of what the machine-learning field can
practically do, and you should now be familiar with the methods employed to
transform the data into a usable format, so that a machine-learning algorithm can
be applied. In the next chapter we will explain the main unsupervised learning
algorithms and how to implement them using the sklearn library.

[45]

Unsupervised Machine
Learning

As we have seen in the Chapter 1, Introduction to Practical Machine Learning Using
Python, unsupervised learning is designed to provide insightful information on data
unlabeled date. In many cases, a large dataset (both in terms of number of points and
number of features) is unstructured and does not present any information at first
sight, so these techniques are used to highlight hidden structures on data (clustering)
or to reduce its complexity without losing relevant information (dimensionality
reduction). This chapter will focus on the main clustering algorithms (the first part of
the chapter) and dimensionality reduction methods (the second part of the chapter).
The differences and advantages of the methods will be highlighted by providing
a practical example using Python libraries. All of the code will be available on the
author's GitHub profile, in the https://github.com/ai2010/machine_learning_
for_the_web/tree/master/chapter_2/ folder. We will now start describing
clustering algorithms.

Clustering algorithms
Clustering algorithms are employed to restructure data in somehow ordered subsets
so that a meaningful structure can be inferred. A cluster can be defined as a group
of data points with some similar features. The way to quantify the similarity of data
points is what determines the different categories of clustering.

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/

Machine Learning Techniques – Unsupervised Learning

[46]

Clustering algorithms can be divided into different categories based on different
metrics or assumptions in which data has been manipulated. We are going to discuss
the most relevant categories used nowadays, which are distribution methods,
centroid methods, density methods, and hierarchical methods. For each category,
a particular algorithm is going to be presented in detail, and we will begin by
discussing distribution methods. An example to compare the different algorithms
will be discussed, and both the IPython notebook and script are available in the my
GitHub book folder at https://github.com/ai2010/machine_learning_for_
the_web/tree/master/chapter_2/.

Distribution methods
These methods assume that the data comes from a certain distribution, and the
expectation maximization algorithm is used to find the optimal values for the
distribution parameters. Expectation maximization and the mixture of Gaussian
clustering are discussed hereafter.

Expectation maximization
This algorithm is used to find the maximum likelihood estimates of parameter
distribution models that depend on hidden (unobserved) variables. Expectation
maximization consists of iterating two steps: the E-step, which creates the
log-likelihood function evaluated using the current values of the parameters,
and the M-step, where the new parameters' values are computed, maximizing
the log-likelihood of the E-step.

Consider a set of N elements, {x(i)}i = 1,…,N, and a log-likelihood on the data
as follows:

() ()() () ()()
1 1
log ; log , ;

N N
i i i

zi i
l p x p x zθ θ θ

= =

= = ∑∑ ∑

Here, θ represents the set of parameters and z(i) are the so-called hidden variables.

We want to find the values of the parameters that maximize the log-likelihood
without knowing the values of the z(i) (unobserved variables). Consider a distribution
over the z(i), and Q(z(i)), such as ()()

1
1i

i
o z

=

=∑ � . Therefore:

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/

Chapter 2

[47]

()()
() ()()

()()
() ()()

, ;
| ;

;

i i
i i i

i

p x z
Q z p z x

p x

θ
θ

θ
= =

This means Q(z(i)) is the posterior distribution of the hidden variable, z(i), given x(i)
parameterized by θ. The expectation maximization algorithm comes from the use of
Jensen's inequality and it ensures that carrying out these two steps:

1.
()() () ()()| ;i i iQ z p z z θ=

2.
()()

() ()()
()()()

, ;
log

i

i i
i

i
i z

p x z
Q z

Q z

θ
∑∑

The log-likelihood converges to the maximum, and so the associated θ values
are found.

Mixture of Gaussians
This method models the entire dataset using a mixture of Gaussian distributions.
Therefore, the number of clusters will be given as the number of Gaussians
considered in the mixture. Given a dataset of N elements, {x(i)}i = 1,…,N, where
each ()i dx R∈ is a vector of d-features modeled by a mixture of Gaussian such
as the following:

()() () ()() ()() ()()
1 1

| , , , , | ,
K K

i i i i i
k k k

k k
p x p x z k p z k p xµ µ φ µ φ

= =

∑ = ∑ = = = ∑∑ ∑

Where:

• () 1,...,iz K∈ is a hidden variable that represents the Gaussian component
each x(i) is generated from

• { }1, , Kµ µ µ= … represents the set of mean parameters of the Gaussian
components

• { }1, , K∑ = ∑ ∑… represents the set of variance parameters of the Gaussian
components

•	 fk is the mixture weight, representing the probability that a randomly

selected x(i) was generated by the Gaussian component k, where
1

1
K

k
k
φ

=

=∑ ,
and { }1, , Kφ φ φ= … is the set of weights

Machine Learning Techniques – Unsupervised Learning

[48]

• ()()
()

()() ()()11
2

/2 1/2

1| ,
2 |

Ti i
k k kx xi

k k d
k

p x e
µ µ

µ
π

−− − ∑ −
∑ =

∑
 is the Gaussian

component k with parameters (),k kµ ∑ associated with the point x(i)

The parameters of our model are thus φ, µ and ∑. To estimate them, we can write
down the log-likelihood of the dataset:

() ()()() () ()() ()()
1 1 1

, , log | , log , , ,
N N N

i i i i

i i i
l p x p x z k p z kφ µ µ µ φ

= = =

∑ = ∑ = ∑ = =∑ ∑ ∑

In order to find the values of the parameters, we apply the expectation
maximization algorithm explained in the previous section where (),θ µ= ∑ and

()() ()(),i iQ z p z φ= .

After choosing a first guess of the parameters, we iterate the following steps until
convergence:

1. E- step: The weights () () ()()| , , ,i i i
kW p z k x φ µ= = ∑ are updated by following

the rule obtained by applying Bayes' theorem:

() ()()
()()

()()
1

| ,
| , , ,

| ,

i
k k ki i

K
i

l l l
l

p x
p z k x

p x

µ φ
φ µ

µ φ
=

∑
= ∑ =

∑∑

2. M-step: The parameters are updated to the following (these formulas come
from solving the maximization problem, which means setting the derivatives
of the log-likelihood to zero):

() ()

()

1

1

N
i i

k
i

k N
i

k
i

w x

w
µ =

=

=
∑

∑

Chapter 2

[49]

() ()() ()()
()

1

1

N Ti i i
k k k

i
k N

i
k

i

w x x

w

µ µ
=

=

− −
∑ =

∑

∑

()

1

N
i

k
i

k

w

N
φ ==

∑

Note that the expectation maximization algorithm is needed because the hidden
variables z(i) are unknown. Otherwise, it would have been a supervised learning
problem, where z(i) is the label of each point of the training set (and the supervised
algorithm used would be the Gaussian discriminant analysis). Therefore, this is
an unsupervised algorithm and the goal is also to find z(i), that is, which of the K
Gaussian components each point x(i) is associated with. In fact, by calculating the
posterior probability () ()()| , , ,i ip z k x φ µ= ∑ for each of the K classes, it is possible to
assign each x(i) to the class k with the highest posterior probability. There are several
cases in which this algorithm can be successfully used to cluster (label) the data.

A possible practical example is the case of a professor with student grades for
two different classes but not labeled per class. He wants to split the grades into
the original two classes assuming that the distribution of grades in each class is
Gaussian. Another example solvable with the mixture of the Gaussian approach is to
determine the country of each person based on a set of people's height values coming
from two different countries and assuming that the distribution of height in each
country follows Gaussian distribution.

Machine Learning Techniques – Unsupervised Learning

[50]

Centroid methods
This class collects all the techniques that find the centers of the clusters, assigning
the data points to the nearest cluster center and minimizing the distances between
the centers and the assigned points. This is an optimization problem and the final
centers are vectors; they may not be the points in the original dataset. The number
of clusters is a parameter to be specified a priori and the generated clusters tend
to have similar sizes so that the border lines are not necessarily well defined. This
optimization problem may lead to a local optimal solution, which means that
different initialization values can result in slightly different clusters. The most
common method is known as k-means (Lloyd's algorithm), in which the distance
minimized is the Euclidean norm. Other techniques find the centers as the medians
of the clusters (k-medians clustering) or impose the center's values to be the actual
data points. Furthermore, other variations of these methods differ in the choice that
the initial centers are defined (k-means++ or fuzzy c-means).

k-means
This algorithm tries to find the center of each cluster as the mean of all the members
that minimize the distance between the center and the assigned points themselves. It
can be associated with the k-nearest-neighbor algorithm in classification problems,
and the resulting set of clusters can be represented as a Voronoi diagram (a method
of partitioning the space in regions based on the distance from a set of points, in
this case, the clusters' centers). Consider the usual dataset, () , 1, ,ix i N∈ … . The
algorithm prescribes to choose a number of centers K, assign the initial mean cluster
centers , 1, ,j j Kµ ∈ … to random values, and then iterate the following steps until
convergence:

1. For each data point i, calculate the Euclidean square distances between each
point i and each center j and find the center index di, which corresponds to
the minimum of these distances: ()| |, 1, ,i

j x j Kµ − ∈ … .
2. For each center j, recalculate its mean value as the mean of the points that

have d_i j equal to j (that is, points belonging to the cluster with mean jµ):

(),

1
_

1

N

d j
i

j N

d ij
i

x iδ
µ

δ

=

=

=
∑

∑

Chapter 2

[51]

It is possible to show that this algorithm converges with respect to the
function given by the following function:

()
_

1

N
i

d i
i

F x µ
=

= −∑

It decreases monotonically with the number of iterations. Since F is a nonconvex
function, it is not guaranteed that the final minimum will be the global minimum. In
order to avoid the problem of a clustering result associated with the local minima,
the k-means algorithm is usually run multiple times with different random initial
center's means. Then the result associated with the lower F value is chosen as the
optimal clustering solution.

Density methods
These methods are based on the idea that sparse areas have to be considered borders
(or noise) and high-density zones should be related to the cluster's centers. The
common method is called density-based spatial clustering of applications with
noise (DBSCAN), which defines the connection between two points through a
certain distance threshold (for this reason, it is similar to hierarchical algorithms; see
Chapter 3, Supervised Machine Learning). Two points are considered linked (belonging
to the same cluster) only if a certain density criterion is satisfied—the number of
neighboring points has to be higher than a threshold value within a certain radius.
Another popular method is mean-shift, in which each data point is assigned to the
cluster that has the highest density in its neighborhood. Due to the time-consuming
calculations of the density through a kernel density estimation, mean-shift is usually
slower than DBSCAN or centroid methods. The main advantages of this class of
algorithms are the ability to define clusters with arbitrary shapes and the ability
to determine the best number of clusters instead of setting this number a priori
as a parameter, making these methods suitable to cluster datasets in which it is
not known.

Machine Learning Techniques – Unsupervised Learning

[52]

Mean – shift
Mean-shift is nonparametric algorithm that finds the positions of the local maxima
in a density kernel function defined on a dataset. The local maxima found can be
considered the centers of clusters in a dataset () , 1,..,ix i N∈ , and the number of
maxima is the number of clusters. In order to be applied as a clustering algorithm,
each point ()l dx R∈ has to be associated with the density of its neighborhood:

()()
() ()

1

1 l iN
l

d
i

x xf x K
Nh h=

 −
=

∑

Here, h is the so-called bandwidth; it estimates the radius of the neighborhood
in which the points affect the density value f(x(l)) (that is, the other points have
negligible effect on ()()lf x). K is the kernel function that satisfies these conditions:

• ()() 1i

R d
K x

∧
∫ =

• ()() 0, 1, ,iK x i N≥ ∈ …

Typical examples of K(x(i)) are the following functions:

• ()()
()()2
22

ix
iK x e σ

−

= : Gaussian kernel

• ()()
()()() ()23 1 1

4
0

i i
i x if x

K x
else

 − ≤ =

: Epanechnikov kernel

The mean-shift algorithm imposes the maximization of f(x(l)), which translates into
the mathematical equation (remember that in function analysis, the maximum is
found by imposing the derivative to 0):

()() ()

() ()
()

() ()
1
'

0
'

l iN
i

il l
l i

x xK x
h

f x x
x xK
h

=

 −

 ∇ = → =
 −

∑

Here, K' is derivative of the kernel density function K.

Chapter 2

[53]

Therefore, to find the local maxima position associated with the feature vector x(l), the
following iterative equation can be computed:

() ()

() ()
()

() ()
() () ()()1

1

'

'

l iN
it

il l l l l
t t t t tl i

t

x xK x
h

x x x x m x
x xK
h

=
+

 −

 = + − = +
 −

∑

Here, ()()ltm x is called the mean-shift vector. The algorithm will converge when at

iteration t=a, the condition () ()0 0
l l

f x m x
a a

∇ = → =

 is satisfied.

Supported by the equation, we can now explain the algorithm with the help of the
following figure. At the first iteration t=0, the original points () , 1, ,lx l N∈ … (red)
are spread on the data space, the mean shift vector ()() ()()0 , 1, ,l lm x m x l N= ∈ …
is calculated, and the same points are marked with a cross (x) to track their
evolution with the algorithm. At iteration 1, the dataset will be obtained using the
aforementioned equation, and the resulting points ()

1 , 1,..,lx l N∈ are shown in the
following figure with the (+) symbol:

Sketch of the mean-shift evolution through iterations

Machine Learning Techniques – Unsupervised Learning

[54]

In the preceding figure, at iteration 0 the original points are shown in red (cross), at
iteration 1 and K the sample points (symbols + and * respectively) move towards the
local density maxima indicated by blue squares.

Again, at iteration K, the new data points () , 1,..,l
Kx l N∈ are computed and they are

shown with the * symbol in the preceding figure. The density function values ()()lKf x
associated with ()l

Kx are larger than the values in the previous iterations since the
algorithm aims to maximize them. The original dataset is now clearly associated
with points () , 1,..,l

Kx l N∈ , and they converge to the locations plotted in blue squares
in the preceding figure. The feature vectors () , 1, ,lx l N∈ … are now collapsing to two
different local maxima, which represent the centers of the two clusters.

In order to properly use the method, some considerations are necessary.

The only parameter required, the bandwidth h, needs to be tuned cleverly to achieve
good results. In fact, too low value of h may result in a large number of clusters,
while a large value of h may merge multiple distinct clusters. Note also that if the
number d of feature vector dimensions is large, the mean-shift method may lead to
poor results. This is because in a very-high-dimensional space, the number of local
maxima is accordingly large and the iterative equation can easily converge too soon.

Hierarchical methods
The class of hierarchical methods, also called connectivity-based clustering, forms
clusters by collecting elements on a similarity criteria based on a distance metric:
close elements gather in the same partition while far elements are separated into
different clusters. This category of algorithms is divided in two types: divisive
clustering and agglomerative clustering. The divisive approach starts by assigning
the entire dataset to a cluster, which is then divided in two less similar (distant)
clusters. Each partition is further divided until each data point is itself a cluster.
The agglomerative method, which is the most often employed method, starts from
the data points, each of them representing a cluster. Then these clusters are merged
by similarity until a single cluster containing all the data points remains. These
methods are called hierarchical because both categories create a hierarchy of clusters
iteratively, as the following figure shows. This hierarchical representation is called a
dendrogram. On the horizontal axis, there are the elements of the dataset, and on the
vertical axis, the distance values are plotted. Each horizontal line represents a cluster
and the vertical axis indicates which element/cluster forms the related cluster:

Chapter 2

[55]

In the preceding figure, agglomerative clustering starts from many clusters as dataset
points and ends up with a single cluster that contains the entire dataset. Vice versa,
the divisive method starts from a single cluster and finishes when all clusters contain
a single data point each.

The final clusters are then formed by applying criteria to stop the agglomeration/
division strategy. The distance criteria sets the maximum distance above which two
clusters are too far away to be merged, and the number of clusters criteria sets the
maximum number of clusters to stop the hierarchy from continuing to merge or split
the partitions.

An example of agglomeration is given by the following algorithm:

1. Assign each element i of the dataset () , 1,..,ix i N∈ to a different cluster.
2. Calculate the distances between each pair of clusters and merge the closest

pair into a single cluster, reducing the total number of clusters by 1.
3. Calculate the distances of the new cluster from the others.
4. Repeat steps 2 and 3 until only a single cluster remains with all N elements.

Machine Learning Techniques – Unsupervised Learning

[56]

Since the distance d(C1,C2) between two clusters C1, C2, is computed by definition
between two points 1 1, 2 2c C c C∈ ∈ and each cluster contains multiple points, a
criteria to decide which elements have to be considered to calculate the distance is
necessary (linkage criteria). The common linkage criteria of two clusters C1 and C2
are as follows:

• Single linkage: The minimum distance among the distances between any
element of C1 and any element of C2 is given by the following:

() (){ }1, 2 min 1, 2 : 1 1, 2 2d C C d c c c C c C= ∈ ∈

• Complete linkage: The maximum distance among the distances between any
element of C1 and any element of C2 is given by the following:

() (){ }1, 2 max 1, 2 : 1 1, 2 2d C C d c c c C c C= ∈ ∈

• Unweighted pair group method with arithmetic mean (UPGMA) or average
linkage: The average distance among the distances between any element of

C1 and any element of C2 is () ()
1 1 2 21 2

11, 2 1, 2
c C c Cc c

d C C d c c
N N ∈ ∈

= ∑ ∑ , where

1 2,c cN N are the numbers of elements of C1 and C2, respectively.
• Ward algorithm: This merges partitions that do not increase a certain

measure of heterogeneity. It aims to join two clusters C1 and C2 that have the
minimum increase of a variation measure, called the merging cost ()1, 2C C∆ ,
due to their combination. The distance in this case is replaced by the merging
cost, which is given by the following formula:

() 21 2
1 2 1 2

1 1 2 21 2 1 2

1 11, 2 1, 2c c
c c c c

c C c Cc c c c

N NC C c c
N N N N

µ µ µ µ
∈ ∈

∆ = − = =
+ ∑ ∑

Here, 1 2,c cN N are the numbers of elements of C1 and C2, respectively.

There are different metrics d(c1,c2) that can be chosen to implement a hierarchical
algorithm. The most common is the Euclidean distance:

() ()21, 2 1 2i i
i

d c c c c= −∑

Chapter 2

[57]

Note that this class of method is not particularly time-efficient, so it is not suitable
for clustering large datasets. It is also not very robust towards erroneously clustered
data points (outliers), which may lead to incorrect merging of clusters.

Training and comparison of the clustering methods
To compare the clustering methods just presented, we need to generate a dataset.
We choose the two dataset classes given by the two two-dimensional multivariate
normal distributions with means and covariance equal to [] []1 210,0 , 0,10µ µ= = and

1 2

3 1
1 4

σ σ

= =

, respectively.

The data points are generated using the NumPy library and plotted with matplotlib:

from matplotlib import pyplot as plt

import numpy as np

np.random.seed(4711) # for repeatability

c1 = np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]],
size=[100,])

l1 = np.zeros(100)

l2 = np.ones(100)

c2 = np.random.multivariate_normal([0, 10], [[3, 1], [1, 4]],
size=[100,])

#add noise:

np.random.seed(1) # for repeatability

noise1x = np.random.normal(0,2,100)

noise1y = np.random.normal(0,8,100)

noise2 = np.random.normal(0,8,100)

c1[:,0] += noise1x

c1[:,1] += noise1y

c2[:,1] += noise2

fig = plt.figure(figsize=(20,15))

ax = fig.add_subplot(111)

ax.set_xlabel('x',fontsize=30)

ax.set_ylabel('y',fontsize=30)

fig.suptitle('classes',fontsize=30)

labels = np.concatenate((l1,l2),)

X = np.concatenate((c1, c2),)

Machine Learning Techniques – Unsupervised Learning

[58]

pp1= ax.scatter(c1[:,0], c1[:,1],cmap='prism',s=50,color='r')

pp2= ax.scatter(c2[:,0], c2[:,1],cmap='prism',s=50,color='g')

ax.legend((pp1,pp2),('class 1', 'class2'),fontsize=35)

fig.savefig('classes.png')

A normally distributed noise has been added to both classes to make the example
more realistic. The result is shown in the following figure:

Two multivariate normal classes with noise

The clustering methods have been implemented using the sklearn and scipy
libraries and again plotted with matplotlib:

import numpy as np

from sklearn import mixture

from scipy.cluster.hierarchy import linkage

from scipy.cluster.hierarchy import fcluster

from sklearn.cluster import KMeans

from sklearn.cluster import MeanShift

Chapter 2

[59]

from matplotlib import pyplot as plt

fig.clf()#reset plt

fig, ((axis1, axis2), (axis3, axis4)) = plt.subplots(2, 2, sharex='col',
sharey='row')

#k-means

kmeans = KMeans(n_clusters=2)

kmeans.fit(X)

pred_kmeans = kmeans.labels_

plt.scatter(X[:,0], X[:,1], c=kmeans.labels_, cmap='prism') # plot
points with cluster dependent colors

axis1.scatter(X[:,0], X[:,1], c=kmeans.labels_, cmap='prism')

axis1.set_ylabel('y',fontsize=40)

axis1.set_title('k-means',fontsize=20)

#mean-shift

ms = MeanShift(bandwidth=7)

ms.fit(X)

pred_ms = ms.labels_

axis2.scatter(X[:,0], X[:,1], c=pred_ms, cmap='prism')

axis2.set_title('mean-shift',fontsize=20)

#gaussian mixture

g = mixture.GMM(n_components=2)

g.fit(X)

pred_gmm = g.predict(X)

axis3.scatter(X[:,0], X[:,1], c=pred_gmm, cmap='prism')

axis3.set_xlabel('x',fontsize=40)

axis3.set_ylabel('y',fontsize=40)

axis3.set_title('gaussian mixture',fontsize=20)

#hierarchical

generate the linkage matrix

Machine Learning Techniques – Unsupervised Learning

[60]

Z = linkage(X, 'ward')

max_d = 110

pred_h = fcluster(Z, max_d, criterion='distance')

axis4.scatter(X[:,0], X[:,1], c=pred_h, cmap='prism')

axis4.set_xlabel('x',fontsize=40)

axis4.set_title('hierarchical ward',fontsize=20)

fig.set_size_inches(18.5,10.5)

fig.savefig('comp_clustering.png', dpi=100)

The k-means function and Gaussian mixture model have a specified number of
clusters (n_clusters =2,n_components=2), while the mean-shift algorithm has the
bandwidth value bandwidth=7. The hierarchical algorithm is implemented using
the ward linkage and the maximum (ward) distance, max_d, is set to 110 to stop the
hierarchy. The fcluster function is used to obtain the predicted class for each data
point. The predicted classes for the k-means and the mean-shift method are accessed
using the labels_ attribute, while the Gaussian mixture model needs to employ
the predict function. The k -means, mean-shift, and Gaussian mixture methods
have been trained using the fit function, while the hierarchical method has been
trained using the linkage function. The output of the preceding code is shown in the
following figure:

IClustering of the two multivariate classes using k-means, mean-shift,
Gaussian mixture model, and hierarchical ward method

Chapter 2

[61]

The mean-shift and hierarchical methods show two classes, so the choice of
parameters (bandwidth and maximum distance) is appropriate. Note that the
maximum distance value for the hierarchical method has been chosen looking
at the dendrogram (the following figure) generated by the following code:

from scipy.cluster.hierarchy import dendrogram

fig = plt.figure(figsize=(20,15))

plt.title('Hierarchical Clustering Dendrogram',fontsize=30)

plt.xlabel('data point index (or cluster index)',fontsize=30)

plt.ylabel('distance (ward)',fontsize=30)

dendrogram(

 Z,

 truncate_mode='lastp', # show only the last p merged clusters

 p=12,

 leaf_rotation=90.,

 leaf_font_size=12.,

 show_contracted=True,

)

fig.savefig('dendrogram.png')

Machine Learning Techniques – Unsupervised Learning

[62]

The truncate_mode='lastp' flag allows us to specify the number of last merges to
show in the plot (in this case, p=12). The preceding figure clearly shows that when
the distance is between 100 and 135, there are only two clusters left:

IHierarchical clustering dendrogram for the last 12 merges

In the preceding figure on the horizontal axis, the number of data points belonging to
each cluster before the last 12 merges is shown in brackets ().

Chapter 2

[63]

Apart from the Gaussian mixture model, the other three algorithms misclassify
some data points, especially k-means and hierarchical methods. This result proves
that the Gaussian mixture model is the most robust method, as expected, since the
dataset comes from the same distribution assumption. To evaluate the quality of the
clustering, scikit-learn provides methods to quantify the correctness of the partitions:
v-measure, completeness, and homogeneity. These methods require the real value of
the class for each data point, so they are referred to as external validation procedures.
This is because they require additional information not used while applying the
clustering methods. Homogeneity, h, is a score between 0 and 1 that measures
whether each cluster contains only elements of a single class. Completeness, c,
quantifies with a score between 0 and 1 whether all the elements of a class are
assigned to the same cluster. Consider a clustering that assigns each data point to
a different cluster. In this way, each cluster will contains only one class and the
homogeneity is 1, but unless each class contains only one element, the completeness
is very low because the class elements are spread around many clusters. Vice versa,
if a clustering results in assigning all the data points of multiple classes to the same
cluster, certainly the completeness is 1 but homogeneity is poor. These two scores
have a similar formula, as follows:

()
()

()
()

1 , 1l l

l

H C C H C C
h c

H C H C
= − = −

Here:

• ()lH C C is the conditional entropy of the classes Cl, given the cluster

assignments ()
1 1

log
lC C

pc pc
l

p c c

N N
H C C

N N= =

= −

∑∑

• ()lH C C is the conditional entropy of the clusters, given the class

membership ()
1 1

log
lC C

pc pc
l

p c p

N N
H C C

N N= =

= −

∑∑

• H(Cl) is the entropy of the classes: ()
1

log
lC

p p
l

p

N N
H C

N N=

= −

∑

• H(C) is the entropy of the clusters: () logc cN NH C
N N

 = −

∑
• Npc is the number of elements of class p in cluster c, Np is the number of

elements of class p, and Nc is the number of elements of cluster c

Machine Learning Techniques – Unsupervised Learning

[64]

The v-measure is simply the harmonic mean of the homogeneity and the completeness:

2 hcv
h c

=
+

These measures require the true labels to evaluate the quality of the clustering,
and often this is not real-case scenario. Another method only employs data from
the clustering itself, called silhouette, which calculates the similarities of each data
point with the members of the cluster it belongs to and with the members of the
other clusters. If on average each point is more similar to the points of its own cluster
than the rest of the points, then the clusters are well defined and the score is close
to 1 (it is close to -1, otherwise). For the formula, consider each point i and the
following quantities:

• ds(i) is the average distance of the point i from the points of the same cluster

• drest(i) is the minimum distance of point i from the rest of the points in all
other clusters

The silhouette can be defined as

() () ()
() ()(),

rest s

s rest

d i d i
s i

max d i d i
−

= , and the silhouette score is the average of s(i) for all

data points.

The four clustering algorithms we covered are associated with the following values
of these four measures calculated using sklearn (scikit-learn):

from sklearn.metrics import homogeneity_completeness_v_measure

from sklearn.metrics import silhouette_score

res = homogeneity_completeness_v_measure(labels,pred_kmeans)

print 'kmeans measures, homogeneity:',res[0],' completeness:',res[1],'
v-measure:',res[2],' silhouette score:',silhouette_score(X,pred_kmeans)

res = homogeneity_completeness_v_measure(labels,pred_ms)

print 'mean-shift measures, homogeneity:',res[0],'
completeness:',res[1],' v-measure:',res[2],' silhouette
score:',silhouette_score(X,pred_ms)

res = homogeneity_completeness_v_measure(labels,pred_gmm)

print 'gaussian mixture model measures, homogeneity:',res[0],'
completeness:',res[1],' v-measure:',res[2],' silhouette
score:',silhouette_score(X,pred_gmm)

res = homogeneity_completeness_v_measure(labels,pred_h)

Chapter 2

[65]

print 'hierarchical (ward) measures, homogeneity:',res[0],'
completeness:',res[1],' v-measure:',res[2],' silhouette
score:',silhouette_score(X,pred_h)

The preceding code produces the following output:

kmeans measures, homogeneity: 0.25910415428 completeness: 0.259403626429
v-measure: 0.259253803872 silhouette score: 0.409469791511

mean-shift measures, homogeneity: 0.657373750073 completeness:
0.662158204648 v-measure: 0.65975730345 silhouette score: 0.40117810244

gaussian mixture model measures, homogeneity: 0.959531296098
completeness: 0.959600517797 v-measure: 0.959565905699 silhouette
score: 0.380255218681

hierarchical (ward) measures, homogeneity: 0.302367273976 completeness:
0.359334499592 v-measure: 0.32839867574 silhouette score:
0.356446705251

As expected from the analysis of the preceding figure, the Gaussian mixture model
has the best values of the homogeneity, completeness, and v-measure measures
(close to 1); mean-shift has reasonable values (around 0.5); while k-means and
hierarchical methods result in poor values (around 0.3). The silhouette score instead
is decent for all the methods (between 0.35 and 0.41), meaning that the clusters are
reasonably well defined.

Dimensionality reduction
Dimensionality reduction, which is also called feature extraction, refers to the
operation to transform a data space given by a large number of dimensions to a
subspace of fewer dimensions. The resulting subspace should contain only the most
relevant information of the initial data, and the techniques to perform this operation
are categorized as linear or non-linear. Dimensionality reduction is a broad class of
techniques that is useful for extracting the most relevant information from a large
dataset, decreasing its complexity but keeping the relevant information.

The most famous algorithm, Principal Component Analysis (PCA), is a linear
mapping of the original data into a subspace of uncorrelated dimensions, and it will
be discussed hereafter. The code shown in this paragraph is available in IPython
notebook and script versions at the author's GitHub book folder at https://
github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/.

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/

Machine Learning Techniques – Unsupervised Learning

[66]

Principal Component Analysis (PCA)
The principal component analysis algorithm aims to identify the subspace where
the relevant information of a dataset lies. In fact, since the data points can be
correlated in some data dimensions, PCA will find the few uncorrelated dimensions
in which the data varies. For example, a car trajectory can be described by a series
of variables such as velocity in km/h or m/s, position in latitude and longitude,
position in meters from a chosen point, and position in miles from a chosen point.
Clearly, the dimensions can be reduced because the velocity variables and the
position variables give the same information (correlated variables), so the relevant
subspace can be composed of two uncorrelated dimensions (a velocity variable and
a position variable). PCA finds not only the uncorrelated set of variables but also
the dimensions where the variance is maximized. That is, between the velocity in
km/h and miles/h, the algorithm will select the variable with the highest variance,
which is trivially represented by the line between the two axes given by the function
velocity[km/h]=3.6*velocity[m/s] (typically closer to the km/h axis because 1 km/h = 3.6
m/s and the velocity projections are more spread along the km/h axis than the
m/s axis):

The linear function between the velocity in m/s and km/h

The preceding figure represents the linear function between the velocity in m/s and
km/h. The projections of the points along the km/h axis have a large variance, while
the projections on the m/s axis have a lower variance. The variance along the linear
function velocity[km/h]=3.6*velocity[m/s] is larger than both axes.

Chapter 2

[67]

Now we are ready to discuss the method and its features in detail. It is possible to
show that finding the uncorrelated dimensions in which the variance is maximized
is equivalent to computing the following steps. As usual, we consider the feature
vectors () , 1,..,ix i N∈ :

• The average of the dataset: ()

1

1 N
i

i
x

N
µ

=

= ∑

• The mean shifted dataset: () () , 1, ,i iu x i Nµ= − ∈ …

• The rescaled dataset, in which each feature vector component
()i

ju

has been divided by the standard deviation,
() ()
/

i i

j j ju uσ → , where

()()
1/2

2

1

1 N
i

j j
i

x
N

σ
=

=

∑

• The sample covariance matrix: ()() ()

1

1
1

N Ti i

i
u u

N =

∑ =
− ∑

• The k largest eigenvalues, 1, ,ii kλ ∈ … , and their associated eigenvectors,
() 1, ,iw i k∈ …

• Projected feature vectors on the subspace of the k eigenvectors
() ()i iT kv W u R= ∈ , where 1 k NxkW w w R = ∈ … is the matrix of the

eigenvectors with N rows and k columns

The final feature's vectors (principal components), ()iv lie on a subspace Rk, which
still retain the maximum variance (and information) of the original vectors.

Note that this technique is particularly useful when dealing with high-dimensional
datasets, such as in face recognition. In this field, an input image has to be compared
with a database of other images to find the right person. The PCA application is
called Eigenfaces, and it exploits the fact that a large number of pixels (variables)
in each image are correlated. For instance, the background pixels are all correlated
(the same), so a dimensionality reduction can be applied, and comparing images
in a smaller subspace is a faster approach that gives accurate results. An example
of implementation of Eigenfaces can be found on the author's GitHub profile at
https://github.com/ai2010/eigenfaces.

https://github.com/ai2010/eigenfaces

Machine Learning Techniques – Unsupervised Learning

[68]

PCA example
As an example of the usage of PCA as well as the NumPy library discussed in
Chapter 1, Introduction to Practical Machine Learning using Python we are going to
determine the principal component of a two-dimensional dataset distributed
along the line y=2x, with random (normally distributed) noise. The dataset and
the corresponding figure (see the following figure) have been generated using the
following code:

import numpy as np

from matplotlib import pyplot as plt

#line y = 2*x

x = np.arange(1,101,1).astype(float)

y = 2*np.arange(1,101,1).astype(float)

#add noise

noise = np.random.normal(0, 10, 100)

y += noise

fig = plt.figure(figsize=(10,10))

#plot

plt.plot(x,y,'ro')

plt.axis([0,102, -20,220])

plt.quiver(60, 100,10-0, 20-0, scale_units='xy', scale=1)

plt.arrow(60, 100,10-0, 20-0,head_width=2.5, head_length=2.5, fc='k',
ec='k')

plt.text(70, 110, r'v^1', fontsize=20)

#save

ax = fig.add_subplot(111)

ax.axis([0,102, -20,220])

ax.set_xlabel('x',fontsize=40)

ax.set_ylabel('y',fontsize=40)

fig.suptitle('2 dimensional dataset',fontsize=40)

fig.savefig('pca_data.png')

Chapter 2

[69]

The following figure shows the resulting dataset. Clearly there is a direction in which
the data is distributed and it corresponds to the principal component 1v that we are
going to extract from the data.

A two-dimensional dataset. The principal component direction v1 is indicated by an arrow.

The algorithm calculates the mean of the two-dimensional dataset and the mean
shifted dataset, and then rescales with the corresponding standard deviation:

mean_x = np.mean(x)

mean_y = np.mean(y)

u_x = (x- mean_x)/np.std(x)

u_y = (y-mean_y)/np.std(y)

sigma = np.cov([u_x,u_y])

Machine Learning Techniques – Unsupervised Learning

[70]

To extract the principal component, we have to calculate the eigenvalues and
eigenvectors and select the eigenvector associated with the largest eigenvalue:

eig_vals, eig_vecs = np.linalg.eig(sigma)

eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i])

 for i in range(len(eig_vals))]

eig_pairs.sort()

eig_pairs.reverse()

v1 = eig_pairs[0][1]

print v1

array([0.70710678, 0.70710678]

To check whether the principal component lies along the line as expected, we need to
rescale back its coordinates:

x_v1 = v1[0]*np.std(x)+mean_x

y_v1 = v1[1]*np.std(y)+mean_y

print 'slope:',(y_v1-1)/(x_v1-1)

slope: 2.03082418796

The resulting slope is approximately 2, which agrees with the value chosen
at the beginning. The scikit-learn library provides a possible ready-to-use
implementation of the PCA algorithm without applying any rescaling or mean
shifting. To use the sklearn module, we need to transform the rescaled data into a
matrix structure in which each row is a data point with x, y coordinates:

X = np.array([u_x,u_y])

X = X.T

print X.shape

(100,2)

The PCA module can be started now, specifying the number of principal components
we want (1 in this case):

from sklearn.decomposition import PCA

pca = PCA(n_components=1)

pca.fit(X)

v1_sklearn = pca.components_[0]

print v1_sklearn

[0.70710678 0.70710678]

Chapter 2

[71]

The principal component is exactly the same as the one obtained using the
step-by-step approach,[0.70710678 0.70710678], so the slope will also be
the same. The dataset can now be transformed into the new one-dimensional
space with both approaches:

#transform in reduced space

X_red_sklearn = pca.fit_transform(X)

W = np.array(v1.reshape(2,1))

X_red = W.T.dot(X.T)

#check the reduced matrices are equal

assert X_red.T.all() == X_red_sklearn.all(), 'problem with the pca
algorithm'

The assert exception is not thrown, so the results show a perfect agreement between
the two methods.

Singular value decomposition
This method is based on a theorem that states that a matrix X d x N can be
decomposed as follows:

TX U V= ∑

Here:

• U is a d x d unitary matrix

• ∑ is a d x N diagonal matrix where the diagonal entries si are called
singular values

• V is an N x N unitary matrix

In our case, X can be composed by the feature's vectors () 1, ,ix i N∈ … , where each
()i dx R∈ is a column. We can reduce the number of dimensions of each feature

vector d, approximating the singular value decomposition. In practice, we consider
only the largest singular values 1,., t t dσ σ < so that:

() () (), , ,T T
t t t t tX U V U d x t t x t V t x N∑ ∑�

Machine Learning Techniques – Unsupervised Learning

[72]

t represents the dimension of the new reduced space where the feature vectors are
projected. A vector x(i) is transformed in the new space using the following formula:

() ()() 1
Ti i t

t t tx x U R−= ∑ ∈

This means that the matrix T
t tV∑ (not T

tV) represents the feature vectors in the t
dimensional space.

Note that it is possible to show that this method is very similar to the PCA; in fact,
the scikit-learn library uses SVD to implement PCA.

Summary
In this chapter, the main clustering algorithms were discussed in detail. We
implemented them (using scikit-learn) and compared the results. Also, the most
relevant dimensionality reduction technique, principal component analysis, was
presented and implemented. You should now have the knowledge to use the main
unsupervised learning techniques in real scenarios using Python and its libraries.

In the next chapter, the supervised learning algorithms will be discussed, for both
classification and regression problems.

[73]

Supervised Machine Learning
In this chapter, the most relevant regression and classification techniques are
discussed. All of these algorithms share the same background procedure, and
usually the name of the algorithm refers to both a classification and a regression
method. The linear regression algorithms, Naive Bayes, decision tree, and support
vector machine are going to be discussed in the following sections. To understand
how to employ the techniques, a classification and a regression problem will be
solved using the mentioned methods. Essentially, a labeled train dataset will be used
to train the models, which means to find the values of the parameters, as we discussed
in the introduction. As usual, the code is available in my GitHub folder at https://
github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/.

We will conclude the chapter with an extra algorithm that may be used for
classification, although it is not specifically designed for this purpose (hidden
Markov model). We will now begin to explain the general causes of error in the
methods when predicting the true labels associated with a dataset.

Model error estimation
We said that the trained model is used to predict the labels of new data, and the
quality of the prediction depends on the ability of the model to generalize, that is,
the correct prediction of cases not present in the trained data. This is a well-known
problem in literature and related to two concepts: bias and variance of the outputs.

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/

Supervised Machine Learning

[74]

The bias is the error due to a wrong assumption in the algorithm. Given a point x(t)
with label yt, the model is biased if it is trained with different training sets, and the
predicted label yt

pred will always be different from yt. The variance error instead refers
to the different, wrongly predicted labels of the given point x(t). A classic example
to explain the concepts is to consider a circle with the true value at the center (true
label), as shown in the following figure. The closer the predicted labels are to the
center, the more unbiased the model and the lower the variance (top left in the
following figure). The other three cases are also shown here:

Variance and bias example.

A model with low variance and low bias errors will have the predicted labels that is
blue dots (as show in the preceding figure) concentrated on the red center (true label).
The high bias error occurs when the predictions are far away from the true label, while
high variance appears when the predictions are in a wide range of values.

We have already seen that labels can be continuous or discrete, corresponding
to regression classification problems respectively. Most of the models are
suitable for solving both problems, and we are going to use word regression
and classification referring to the same model. More formally, given a set of
N data points and corresponding labels 1, ,ty t N∈ … , a model with a set of
parameters 0, 1., , 0,.., 1M j j Mθ θ θ θ−= ∈ − with the true parameter values

0 1
ˆ ˆ ˆ ˆ,.., , 0,.., 1M j j Mθ θ θ θ−= ∈ − will have the mean square error (MSE), equal to:

() () () ()() ()() () ()2 22 2

1

1ˆ ˆ ˆ ˆ,
N

pred
t t

t
MSE y y E E E E Var Bias

N
θ θ θ θ θ θ θ θ θ θ

=

 = − = − = − + − = + ∑

Chapter 3

[75]

We will use the MSE as a measure to evaluate the methods discussed in this chapter.
Now we will start describing the generalized linear methods.

Generalized linear models
The generalized linear model is a group of models that try to find the M parameters

0, , 1j j Mθ ∈ −… that form a linear relationship between the labels yi and the feature
vector x(i) that is as follows:

() ()()
1

0
0, , 1

M
i i

i j j i i
j

y x h x i Nθθ
−

=

= +∈ = +∈ ∀ ∈ −∑ …

Here, i∈ are the errors of the model. The algorithm for finding the parameters tries
to minimize the total error of the model defined by the cost function J:

()()()
1 2

0

1
2

N
i

i
i

J y h xθ

−

=

= −∑

The minimization of J is achieved using an iterative algorithm called batch gradient
descent:

1

0
, 0, , 1

N

j j
i j

J j Mθ θ α
θ

−

=

∂
← + ∀ ∈ −

∂∑ …

Here, α is called learning rate, and it is a trade-off between convergence speed and
convergence precision. An alternative algorithm that is called stochastic gradient
descent, that is loop for 0, , 1i N∈ −… :

, 0, , 1j j
j

J j Mθ θ α
θ
∂

← + ∀ ∈ −
∂

…

The qj is updated for each training example i instead of waiting to sum over the
entire training set. The last algorithm converges near the minimum of J, typically
faster than batch gradient descent, but the final solution may oscillate around the
real values of the parameters. The following paragraphs describe the most common

model
()()ih xθ and the corresponding cost function, J.

Supervised Machine Learning

[76]

Linear regression
Linear regression is the simplest algorithm and is based on the model:

()() () () ()
1

0 1 1 2 2
0

, 0,.., 1
M

i i i i
j j

j
h x x x x i Nθ θ θ θ θ

−

=

= + + + = ∀ ∈ −∑…

The cost function and update rule are:

()()() ()()() ()
1 2

0

1 0,.., 1
2

N
i i i

i i j
i j

JJ y h x y h x x j Mθ θθ

−

=

∂
= − → = − ∀ ∈ −

∂∑

Ridge regression
Ridge regression, also known as Tikhonov regularization, adds a term to the cost
function J such that:

()()() ()()() ()
1 12

0 0

21
2 2

N M
i i i

i i j j
i j j

JJ y h x y h x x
jθ θ

λ θ λθ
θ

− −

= =

∂
= − + → = − +

∂∑ ∑

0,.., 1j M∀ ∈ − , where λ is the regularization parameter. The additional term has the
function needed to prefer a certain set of parameters over all the possible solutions
penalizing all the parameters qj different from 0. The final set of qj shrank around
0, lowering the variance of the parameters but introducing a bias error. Indicating
with the superscript l the parameters from the linear regression, the ridge regression
parameters are related by the following formula:

1

l
j

j

θ
θ

λ
=

+

This clearly shows that the larger the λ value, the more the ridge parameters are
shrunk around 0.

Chapter 3

[77]

Lasso regression
Lasso regression is an algorithm similar to ridge regression, the only difference being
that the regularization term is the sum of the absolute values of the parameters:

()()() ()()() () ()
1 12

0 0

1
2

N M
i i i

i j i j j
i j j

JJ y h x y h x x signθ θλ θ λ θ
θ

− −

= =

∂
= − + → = − +

∂∑ ∑

0,.., 1j M∀ ∈ −

Logistic regression
Despite the name, this algorithm is used for (binary) classification problems,
so we define the labels 0,1iy ∈ . The model is given the so-called logistic function
expressed by:

()()
()

1

0

1

1

M
i

j j
j

i

x
h x

e

θ
θ

−

=

−
=

∑
+

In this case, the Maximum Conditional Likelihood Estimates (MCLE) function is
defined as follows:

()()() () ()()()
1

0

1 log 1 log 1
2

N
i i

i i
i

J y h x y h xθ θ

−

=

= + − −∑

From this, the update rule is formally the same as linear regression (but the model
definition, hθ , is different):

()()() ()
0,.., 1

ii
i j

j

J y h x x j Mθθ
∂

= − ∀ ∈ −
∂

Supervised Machine Learning

[78]

Note that the prediction for a point p, ()()ph xθ , is a continuous value between 0
and 1. So usually, to estimate the class label, we have a threshold at ()()ph xθ =0.5
such that:

()() 0.5 1
0.5 0

ph xθ

≥
= <

The logistic regression algorithm is applicable to multiple label problems using
the techniques one versus all or one versus one. Using the first method, a problem
with K classes is solved by training K logistic regression models, each one assuming
the labels of the considered class j as +1 and all the rest as 0. The second approach

consists of training a model for each pair of labels (()1
2

K K − trained models).

Probabilistic interpretation of generalized
linear models
Now that we have seen the generalized linear model, let's find the parameters qj that
satisfy the relationship:

() ()()
1

0
0, , 1

M
i i

i j j i i
j

y x h x i Nθθ
−

=

= +∈ = +∈ ∀ ∈ −∑ …

Chapter 3

[79]

In the case of linear regression, we can assume i∈ as normally distributed with mean

0 and variance s2 such that the probability is ()
2

221
2

i

ip e σ

πσ

∈
−

∈ = equivalent to:

()()
()()()2
221;

2

i
iy h x

i
ip y x e

θ

σθ
πσ

∧

−
−

=

Therefore, the total likelihood of the system can be expressed as follows:

() ()()
()()()2
2

1 1
2

0 0

1;
2

i
iy h x

N N
i

i
i i

L p y x e
θ

σθ θ
πσ

−
− − −

= =

= =∏ ∏

In the case of the logistic regression algorithm, we are assuming that the logistic
function itself is the probability:

()() ()()1 ;i i
iP y x h xθθ= =

()() ()()0 ; 1i i
iP y x h xθθ= = −

Then the likelihood can be expressed by:

() ()() ()()() ()()()()1 1 1

0 0

; 1
i iN N y y

i i i
i

i i
L p y x h x h xθ θθ θ

− − −

= =

= = −∏ ∏

In both cases, it can be shown that maximizing the likelihood is equivalent to
minimizing the cost function, so the gradient descent will be the same.

Supervised Machine Learning

[80]

k-nearest neighbours (KNN)
This is a very simple classification (or regression) method in which given a set of
feature vectors () 0, , 1ix i N∈ −… with corresponding labels yi, a test point x(t) is
assigned to the label value with the majority of the label occurrences in the K nearest
neighbors () 1, ,kx k K∈ … found, using a distance measure such as the following:

• Euclidean:
() ()()

1 2

0

M
k t

j j
j

x x
−

=

−∑

• Manhattan:
() ()

1

0

M
k t

j j
j

x x
−

=

−∑

• Minkowski:
() ()()

1
1

0

q
M q

k t
j j

j
x x

−

=

−

∑ (if q=2, this reduces to the Euclidean

distance)

In the case of regression, the value yt is calculated by replacing the majority of
occurrences by the average of the labels ky 1, ,k K∈ … . The simplest average (or the
majority of occurrences) has uniform weights, so each point has the same importance
regardless of their actual distance from x(t). However, a weighted average with
weights equal to the inverse distance from x(t) may be used.

Naive Bayes
Naive Bayes is a classification algorithm based on Bayes' probability theorem and
conditional independence hypothesis on the features. Given a set of m features,

0, , 1ix i M∈ −… , and a set of labels (classes) 0, , 1y K∈ −… , the probability of
having label c (also given the feature set xi) is expressed by Bayes' theorem:

() () ()
()

0, 1
0, 1

0, 1

.,
.,

.,
M

M
M

P x x y c P y c
P y c x x

P x x
−

−
−

= =
= =

Chapter 3

[81]

Here:

• ()0, 1., MP x x y c− = is called the likelihood distribution

• ()0, 1., MP c x x − is the posteriori distribution

• ()P y c= is the prior distribution

• ()0,. 1., MP x x − is called the evidence

The predicted class associated with the set of features 0, , 1ix i M∈ −… will be the
value p such that the probability is maximized:

()0,. 10, , 1
.., My K

p arg max P y x x −∈ −
=

…

However, the equation cannot be computed. So, an assumption is needed.

Using the rule on conditional probability () ()
()
,

/
P A B

P A B
P B

= , we can write the

numerator of the previous formula as follows:

() () () () ()0,. 1 0 1,. 1 0.., ., ,M MP x x y c P y c P y c P x y c p x x y c x− −= = = = = = =

() () () ()0 1 0 2,. 1 0, 1, ., ,MP y c P x y c P x y c x p x x y c x x−= = = = =

() () () ()0 1 0 1 0, 1,. 2, , ..,M MP y c P x y c P x y c x p x y c x x x− −= = = =

We now use the assumption that each feature xi is conditionally independent
given c (for example, to calculate the probability of x1 given c, the knowledge
of the label c makes the knowledge of the other feature x0 redundant,
() ()1 1 0,P x y c p x y c x= = =):

() ()
1

0

M

j
j

P y c P x y c
−

=

= =∏

Supervised Machine Learning

[82]

Under this assumption, the probability of having label c is then equal to:

()
() ()

() ()

1

0
0,. 1 11

0 0

1
.,

M

j
j

M MK

j
i j

P x y c P y c
P y c x x

P x y i P y i M

−

=
− −−

= =

= = +
= =

= = +

∏

∑∏
––––––––(1)

Here, the +1 in the numerator and the M in the denominator are constants, useful for
avoiding the 0/0 situation (Laplace smoothing).

Due to the fact that the denominator of (1) does not depend on the labels (it is
summed over all possible labels), the final predicted label p is obtained by finding the
maximum of the numerator of (1):

() ()
1

0,..., 1 0

M

jc K j
p arg max P x y c P y c

−

∈ −
=

= = =∏
––––––––(2)

Given the usual training set () 0,.., 1ix i N∈ − , where ()i Mx i R∈ (M features)

corresponding to the labels set 0,.., 1iy i N∈ − , the probability P(y=c) is simply

calculated in frequency terms as the number of training examples associated with

the class c over the total number of examples, () y cN
P y c

N
== = . The conditional

probabilities ()jP x y i= instead are evaluated by following a distribution. We are

going to discuss two models, Multinomial Naive Bayes and Gaussian Naive Bayes.

Multinomial Naive Bayes
Let's assume we want to determine whether an e-mail s given by a set of word

occurrences () () ()()0,. 1..,s s s
Mx x x −= is spam (1) or not (0) so that 0,1y∈ . M is the size

of the vocabulary (number of features). There are 0,.., 1tw t M∈ − words and N

training examples (e-mails).

Chapter 3

[83]

Each email x(i) with label yi such that () , 0,.., 1i
jx j M∈ − is the number of times

the word j in the vocabulary occurs in the training example i. For example, ()3
1x

represents the number of times the word 1, or w1, occurs in the third e-mail. In this
case, multinomial distribution on the likelihood is applied:

()()
()

()
()

()

()
()

1

1 1
0
1

0 0

0

!

!

s s
j j

M
s

j M Mx xjs
j jM

s j j
j

j

x
p x y P w y P w y

x
α

−

− −
=

−
= =

=

 =
∑

∏ ∏
∏

Here, the normalization constants in the front can be discarded because they do not
depend on the label y, and so the arg max operator will not be affected. The important
part is the evaluation of the single word wj: probability over the training set:

()
()

()

'

'

1

0
1 1

0 0

i

i

N
i

j y y
jyi

j M N
i y

t y y
t i

x N
p w y

Nx

δ

δ

−

=
− −

= =

= =
∑

∑∑

Here Niy is the number of times the word j occurs, that is associated with label y, and
Ny is the portion of the training set with label y.

This is the analogue of ()jP x y i= , ()jp x y c= on equation (1) and the multinomial
distribution likelihood. Due to the exponent on the probability, usually the logarithm
is applied to compute the final algorithm (2):

() () ()
1

0

M
s
j jy j

p arg max log P y x logP w y
−

=

= −∑

Supervised Machine Learning

[84]

Gaussian Naive Bayes
If the features vectors x(i) have continuous values, this method can be applied.
For example, we want to classify images in K classes, each feature j is a pixel, and
xj

(i) is the j-th pixel of the i-th image in the training set with N images and labels
0,.., 1iy i N∈ − . Given an unlabeled image represented by the pixels 0,. 1., Mx x − , in

this case, ()jP x y i= in equation (1) becomes:

()
()2

221
2

j ij

ji

x

j
ji

P x y i e
µ

σ

σ π

−
−

= =

Here:

()
1

,
0
1

,
0

t

t

N
t

j y i
t

ij N

y i
t

x δ
µ

δ

−

=
−

=

=
∑

∑

And:

()()
1 2

,
2 0

1

,
0

1

t

t

N
t

j ij y i
t

ij N

y i
t

x µ δ
σ

δ

−

=
−

=

−
=

−

∑

∑

Chapter 3

[85]

Decision trees
This class of algorithms aims to predict the unknown labels splitting the dataset, by
generating a set of simple rules that are learnt from the features values. For example,
consider a case of deciding whether to take an umbrella today or not based on the
values of humidity, wind, temperature, and pressure. This is a classification problem,
and an example of the decision tree can be like what is shown in the following figure
based on data of 100 days. Here is a sample table:

Humidity (%) Pressure (mbar) Wind (Km/h) Temperature (C) Umbrella
56 1,021 5 21 Yes
65 1,018 3 18 No
80 1,020 10 17 No
81 1,015 11 20 Yes

Decision tree for predicting whether to bring an umbrella or not based on a record of 100 days.

In the preceding figure the numbers in squares represent the days on which an
umbrella has been brought, while the circled numbers indicate days in which an
umbrella was not necessary.

Supervised Machine Learning

[86]

The decision tree presents two types of nodes: decision nodes, which have two
(or more) branches when a decision split is applied; and leaf nodes, when data is
classified. The stopping criterion is usually a maximum number of decision nodes
(depth of the tree) or a minimum of data points to continue to split (typically around
2 to 5). The problem of decision trees learning is to build the best tree out of all the
possible node combinations, that is, estimate the hierarchy of the rules to be applied
(in other words, whether the first decision node should be on humidity or on
temperature, and so on). More formally, given a training set of () , 1,..,ix i N∈ with
x(i) in Rm and corresponding labels yi, we need to find the best rule to partition the
data S at node k. If the chosen feature, j, is continuous, each split rule is given by a
feature j and a threshold tj

k that splits S in (),jleft kS t j for ()i j
j kx t< and (),jright kS t j

for ()i j
j kx t≥ , 1, ,i N∈ … . The best split rule (),q

kt q for the node k is associated with
the minimum of the impurity I function that measures how much the rule is able
to separate the data into partitions with different labels (that is, each branch will
contain the minimum amount of label mixing):

() () (), left rightj
k left right

k k

n n
I t j H S H S

N N
= +

()
()

()
,

, a ,
j
k

q j
k k

t j
t q rg min I t j=

Here, ,left rightn n are the numbers of data points on the left and right branches,
respectively. Nk is the number of data points on node k, and H is a measure that can
assume different expressions using the probability of each target value l at branch b

(b can be left or right), l
bl

b

np
N

= :

• Entropy of the branch: () 2logb bl bl
l

H S p p=∑

• Gini impurity of the branch: () ()1b bl bl
l

H S p p= −∑

Chapter 3

[87]

• Misclassification: () ()1 maxb bll
H S p= −

 ° Mean squared error (variance): () ()21

b

b i b
i Nb

H S y
N

µ
∈

= −∑

(where b

i
i N

b
b

y

N
µ ∈=

∑
)

Note that the latter is typically used in regression problems while the others are
employed in classification. Note also that usually in literature, the information gain
definition is introduced as the difference between H at node k and (),jkI t j

() (),jk kIG H S I t j= − where () 2log , l
k kl kl kl

l k

nH S p p p
N

= =∑

If the feature j is discrete with d number of possible values, there is no binary
threshold tj

k to calculate and the data is split into d partitions. The measure H is
calculated over d subsets.

For example, we can determine the rule for the first node (k=0) for the preceding
example using the entropy as the impurity measure H.

All the features are continuous, so the values of tj
0 are needed. Assuming that j=0

is the humidity and sorting in increasing order, the possible humidity values in the
dataset we have are as follows:

h 0 1 …. 98 99
umbrella yes no …. no no
humidity 58 62 …. 88 89

< >= < >= < >= < >= < >=
yes 0 11 14 32 7 20 29 12 78 0
no 0 89 21 33 13 60 10 49 22 0

()()0 ,0
hI x

0.5 0.99 0.85 0.76 0.76

Supervised Machine Learning

[88]

So, the threshold value for the humidity feature is ()()()0
0 1, ,

,hjh N
t arg min I x j

∈
=

…
= 58;

and in the same way, we can calculate the threshold values for temperature t1
0, wind

t2
0, and pressure t3

0. Now we can record to determine the best rule for the first node,
computing the impurity for each of the four features:

yes umbrella yes
no

umbrella
no

Humidity
j=0

() 0
0 0
ix t< 0 0 Temperature

j=1
() 1
0 0
ix t< 21 32

() 1
0 0
ix t≥ 11 89 () 1

0 0
ix t≥ 11 36

Impurity: ()0
0 ,0 0.5I t = Impurity: ()1

0 ,1 0.88I t =

yes umbrella yes
no

umbrella
no

Wind j=2 () 2
0 0
ix t< 48 5 Pressure j=3 () 3

0 0
ix t< 39 3

() 2
0 0
ix t≥ 1 46 () 3

0 0
ix t≥ 45 13

Impurity: ()2
0 , 2 0.31I t = Impurity: ()3

0 ,3 0.60I t =

Therefore, for node 0, the best rule is given by:

() () () () ()() ()0 1 2 3 2
0 0 0 0 0 00,1,2,3
, ,0 , ,1 , , 2 , ,3 , 2q

j
t q arg min I t I t I t I t t

=
= =

That is, the wind feature with threshold t2
0. We can repeat the same procedure to find

the best rule for the following decision nodes until the end of the tree.

Chapter 3

[89]

Decision trees learning is able to handle large datasets, though it tends not to
generalize well, especially with a large set of features (N≈M). In such cases, it is
advisable to set a small depth of the tree or use some dimensionality reduction
techniques. Setting the minimum number of data points to split or the minimum
number of data points in a leaf node will also help prevent overfitting. This
algorithm may lead to over-complex trees; they can be pruned to reduce the branches
that do not affect the quality of the prediction. Various pruning techniques are
available, but they are beyond the scope of this book. Note also that a series of
decision trees can be trained at the same time, composing of a so-called random
forest. A random forest trains each tree with a random sample of the original data
points, and a random subset of features is available for each decision node learning.
The result is an average of the predictions in a regression problem or the majority in
a classification problem.

Support vector machine
This algorithm, Support Vector Machine (SVM), tries to geometrically separate the
dataset () , 1,..,ix i N∈ into two subsets labeled with yi=+1 and yi=-1. The next figure
shows the data perfectly separated into two classes (empty circles and black circles),
that is, the case the data in which the decision boundary (or hyperplane) given by the
black line fully separates the two classes (in other words, there are no misclassified
data points):

Sketch of the dataset separated into two classes (empty and filled circles) by the black line (decision boundary)

Supervised Machine Learning

[90]

The hyperplane is mathematically described by the equation 0w x b⋅ + = , where
bx

w
−

= is the distance of the hyperplane from the origin and w is the normal to the

hyperplane. The goal of the algorithm is to maximize the distance of the decision
boundary from the data points. In practice, we consider the closest points i to the
hyperplane, called support vectors, that lie in two planes H1, H2 at distances d1, d2
from the decision boundary such that:

() 1iw x b⋅ + = + for H1 such that yi=+1 ––––––––(1)

() 1iw x b⋅ + = − for H2 such that yi=-1––––––––(2)

Assuming d1=d2, the common distance is called margin so that the support vector
machine method finds the values of w and b that maximize the margin.

Since the distance between H1 and H2 is given by 2
w

, the margin is equal to 1
w

and

the support vector machine algorithm is equivalent to:

21
2

min w such that ()(). 1 0 1,..,i
iy w x b i N+ − ≥ ∀ ∈ ,

Here, the square operation and the factor 1
2

 have been added to allow the use of

a quadratic programming method to solve the mathematical problem. Now, the
problem can be rewritten in a Lagrangian form using the Lagrange multipliers ai >0:

()() ()()
1 1 1

2 2

0 0 0

1 11
2 2

N N N
i i

i i i i i
i i i

L w y x w b w y x w bα α α
− − −

= = =

 = − ⋅ + − = − ⋅ + + ∑ ∑ ∑

Setting the derivatives with respect to w and b to 0, we obtain:

()
1

0

N
i

i i
i

w y xα
−

=

=∑ ––––––––(3)

1

0
0

N

i i
i

yα
−

=

=∑ ––––––––(4)

Chapter 3

[91]

So the optimized Lagrangian becomes:

1 1

0 , 0

1 0 0,.., 1, 0
2

N N

d i i ij j i i i
i i j i

L H i N yα α α α α
− −

= =

= − ≥ ∀ ∈ − =∑ ∑ ∑

Here, () ()i j
ij i jH y y x x= ⋅ .

This is known as a dual form of the original problem, which depends only on the
maximization of ai:

1 1

0 , 0

1 0 0,.., 1, 0
2i

N N

i i ij j i i i
i i j i

max H i N y
α

α α α α α
− −

= =

− ≥ ∀ ∈ − =

∑ ∑ ∑

The solutions 0s s Sα > ∈ (the cases ai =0 return null vectors) are found using
a technique called quadratic programming and represent the support vectors w
through formula (3):

()s
s s

s S
w y xα

∈

=∑
––––––––(5).

as satisfy the equation (combination of equation (1) and (2)):

()() 1s
sy w x b= ⋅ + =

Substituting equation (5) and multiplying both sides by ys (which is +1 or -1),
we obtain:

() ()m s
s m m

m S
b y y x xα

∈

= − ⋅∑
Averaging over all the support vectors Ns we can have a better estimate of the
parameter b:

() ()1 m s
s m m

s S m S
b y y x x

N
α

∈ ∈

= − ⋅∑ ∑ ––––––––(6)

Supervised Machine Learning

[92]

The equations (5) and (6) return the values of the parameters that define the support
vector machines algorithm, from which it is possible to predict the class of all test
points t:

() 1 1t
tx w b y⋅ + ≥ → =

() 1 1t
tx w b y⋅ + ≤ − → = −

If a line is not able to completely separate the data points into two classes, we need to
allow the data points to be misclassified by an error 0iξ > such that:

() 1 1t
i tx w b yξ⋅ + ≥ − → =

() 1 1t
i tx w b yξ⋅ + ≤ − + → = −

And we need to maximize the margin, trying to minimize the misclassification
errors. This condition is translated into this equation:

1
2

0

1
2

N

i
i

min w C ξ
−

=

+ ∑ such that ()() 1 0 1,..,i
i iy w x b i Nξ⋅ + − + ≥ ∀ ∈

Here, the parameter C is set to balance the size of the margin with the
misclassification errors (C=0 trivially no misclassification and maximum margin,
C>>1 many misclassified points and a narrow margin). Applying the same method
as before, the dual problem is subjected to Lagrange multipliers' conditions with an
upper bound C:

1 1

0 , 0

1 , 0 0,.., 1, 0
2i

i

N N

i i ij j i i i
i i j i

max H C i N y
α

α

α α α α α
− −

= =

− ≥ ≥ ∀ ∈ − =

∑ ∑ ∑

Chapter 3

[93]

Until now, we have treated problems in which only two classes are considered.
Real problems may have multiple classes, and two procedures are commonly used
to employ this method (as seen for logistic regression): one versus all or one versus
one. Given a problem with M classes, the first method trains M SVM models, each
one assuming the labels of the considered class j +1 and all the rest -1. The second

method instead trains a model for each pair of classes i, j, leading to ()1
2

M M −

trained models. Clearly, the second method is computationally more expensive but
the results are generally more precise.

In a similar way, SVM can be used in regression problems, that is, whenever yi is
continuous between -1 and 1. In this case, the goal is to find the parameters w and b
such that:

()i
iy w x b= ⋅ +

We assume that the true values ti can differ from the predicted value yi of a
maximum ∈ and the predictions can further be misclassified of about ,i iξ ξ+ −
depending on whether yi is larger or smaller than ti. The following figure shows for
an example point i the various predictions yi lying around the true value ti, and the
associated errors:

The predictions yi lie around the true value ti

Supervised Machine Learning

[94]

The minimization problem becomes:

()
1

2

0

1
2

N

i i
i

min w C ξ ξ
−

+ −

=

+ +∑

Such that:

, , 0, 0 0,.., 1i i i i i i i it y t y i Nξ ξ ξ ξ+ − + −− ≤∈+ − ≥ −∈− > > ∀ ∈ −

It is possible to show that the associated dual problem is now equal to:

() () ()()
1 1

, 0 0 ,

1
2i i

N N
i i

i i i i i i i j j
i i i j

max t x x
α α

α α α α α α α α
+ −

− −
+ − + − + − + +

= =

− −∈ − − − − ⋅

∑ ∑ ∑ subject

to ()
1

0
, 0 0,.., 1, 0

N

i i i i
i

C i Nα α α α
−

+ − + −

=

≥ ≥ ∀ ∈ − − =∑ .

Here, ,i iα α+ − are the Lagrangian multipliers.

The new prediction, yp, can be found by applying the formula

()
1

0

N
i p

p i i
i

y x x bα α
−

+ −

=

= − ⋅ +∑ , where the parameter b can be obtained as before—

averaging on the subset S given by the support vectors associated with the subset

, 0s sC α α+ −> > and , 0s sξ ξ+ − = :

() () ()1 m s
s m m m

s S m Ss

b t y x x
N

α α+ −

∈ ∈

= −∈− − ⋅∑ ∑

Chapter 3

[95]

Kernel trick
There are datasets that are not linearly separable in a certain space, but if it is
transformed in the right space, then a hyperplane can separate the data into the
desired two or more classes. Consider the example shown in the following figure:

In a two-dimensional space, the dataset shown on the left is not separable. Mapping the dataset
in a three-dimensional space, the two classes are separable.

We can clearly see that the two classes are not linearly separable in two-dimensional
space (the left figure). Suppose we then apply a kernel function K on the data such
that:

() ()()
() () 2

2

,

2,

i jx x
i jK x x e σ

−

=

Supervised Machine Learning

[96]

The data is now separable by a two-dimensional plane (the right figure). The kernel
function on the SVM algorithm is applied to the matrix Hij, replacing the dot product
on the variable i, j:

() () () ()(),i j i j
ij i j ij i jH y y x x H y y K x x= ⋅ → =

Popular kernel functions used on the SVM algorithm are:

• Linear kernel: () ()() () (),i j i jK x x x x= ⋅

• Radial basis kernel (RBF):
() ()()

() () 2

22,

i jx x
i jK x x e σ

− −

=

• Polynomial kernel: () ()() () ()(),
bi j i jK x x x x a= ⋅ +

• Sigmoid kernel: () ()() () ()(), tanhi j i jK x x ax x b= ⋅ −

A comparison of methods
We can now test the methods discussed in this chapter to solve a regression problem
and a classification problem. To avoid overfitting, the dataset is typically split into
two sets: the training set, in which the model parameters are fitted, and a test set,
where the accuracy of the model is evaluated. However, it may be necessary to use
a third set, the validation set, in which the hyperparameters (for example, C and ∈
for SVM, or α in ridge regression) can be optimized. The original dataset may be
too small to allow splitting into three sets, and also the results may be affected by
the particular choice of data points on the training, validation, and test sets. A
common way to solve this issue is by evaluating the model following the so-called
cross-validation procedure—the dataset is split into k subsets (called folds) and the
model is trained as follows:

• A model is trained using k-1 of the folds as the training data.
• The resulting model is tested on the remaining part of the data.
• This procedure is repeated as many times as the number of folds decided at

the beginning, each time with different k-1 folds to train (and consequently
different test fold). The final accuracy is obtained by the average of the
accuracies obtained on the different k iterations.

Chapter 3

[97]

Regression problem
We are using the housing dataset of Boston's suburbs stored at http://archive.
ics.uci.edu/ml/datasets/Housing and in the author's repository (https://
github.com/ai2010/machine_learning_for_the_web/tree/master/
chapter_3/), in which the code used in this paragraph is also available. The dataset
has 13 features:

• CRIM: Per capita crime rate by town
• ZN: Proportion of residential land zoned for lots over 25,000 sqft
• INDUS: Proportion of non-retail business acres per town
• CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
• NOX: Nitric oxides concentration (parts per 10 million)
• RM: Average number of rooms per dwelling
• AGE: Proportion of owner-occupied units built prior to 1940
• DIS: Weighted distances from five Boston employment centers
• RAD: Index of accessibility to radial highways
• TAX: Full-value property tax rate per $10,000
• PTRATIO: Pupil-teacher ratio by town
• B: 1000(Bk - 0.63)^2, where Bk is the proportion of blacks by town
• LSTAT: The percentage of lower status of the population and the labels

that we want to predict are MEDV, which represent the house value values
(in $1000)

http://archive.ics.uci.edu/ml/datasets/Housing
http://archive.ics.uci.edu/ml/datasets/Housing
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/

Supervised Machine Learning

[98]

To evaluate the quality of the models, the mean squared error defined in the
introduction and the coefficient of determination, R2, are calculated. R2 is given by:

()

()

1 12

2 0 0
1

2

0

1 ,
i

N N
pred

i i
i i

N

i
i

y y y
R y

Ny y

− −

= =
−

=

−
= − =

−

∑ ∑

∑

Here, yi
pred indicates the predicted label from the model.

The best result is R2=1, which means the model perfectly fits the data, while R2=0 is
associated with a model with a constant line (negative values indicate an increasingly
worse fit). The code to compute to train the linear regression, ridge regression, lasso
regression, and SVM regression using the sklearn library is as follows (IPython
notebook at https://github.com/ai2010/machine_learning_for_the_web/
tree/master/chapter_3/):

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/

Chapter 3

[99]

Supervised Machine Learning

[100]

The housing data is loaded using the pandas library and reshuffled to randomize
the cross-validation folds subset data (10 folds have been used) by applying the
function df.iloc[np.random.permutation(len(df))]. The output of this script is
as follows:

The best model fit is obtained using a random forest (with 50 trees); it returns an
average coefficient of determination of 0.86 and MSE=11.5. As expected, the decision
tree regressor has a lower R2 and higher MSE than the random forest (0.67 and 25
respectively). The support vector machine with the rbf kernel (C=1, 0.2∈=) is the
worst model, with a huge MSE error 83.9 and 0.0 at R2, while SVM with the linear
kernel (C=1, 0.2∈=) returns a decent model (0.69 R2 and 25.8 MSE). The lasso and
ridge regressors have comparable results, around 0.7 R2 and 24 MSE. An important
procedure to improve the model results is feature selection. It often happens that
only a subset of the total features is relevant to perform the model training while
the other features may not contribute at all to the model R2. Feature selection may
improve R2 because misleading data is disregarded and training time is reduced
(fewer features to consider).

Chapter 3

[101]

There are many techniques for extracting the best features for a certain model,
but in this context, we explore the so-called recursive feature elimination method
(RSE), which essentially considers the attributes associated with the largest absolute
weights until the desired number of features are selected. In the case of the SVM
algorithm, the weights are just the values of w, while for regression, they are the
model parameters θ. Using the sklearn built-in function RFE specifying only the best
four attributes (best_features):

Supervised Machine Learning

[102]

The output is:

The RFE function returns a list of Booleans (the support_ attribute) to indicate which
features are selected (true values) and which are not (false values). The selected
features are then used to evaluate the model as we have done before.

Even by using only four features, the best model remains the random forest with
50 trees, and the R2 is just marginally lower than that for the model trained with
the full set of features (0.82 against 0.86). The other models—lasso, ridge, decision
tree, and linear SVM regressors—have a more significant R2 drop, but the results are
still comparable with their corresponding full-trained models. Note that the KNN
algorithm does not provide weights on the features, so the RFE method cannot
be applied.

Classification problem
To test the classifiers learned in this chapter, the dataset about car evaluation quality
(inaccurate, accurate, good, and very good) based on six features that describe the
main characteristics of a car (buying price, maintenance cost, number of doors,
number of persons to carry, size of luggage boot, and safety). The dataset can be
found at http://archive.ics.uci.edu/ml/datasets/Car+Evaluation or on
my GitHub account, together with the code discussed here (https://github.com/
ai2010/machine_learning_for_the_web/tree/master/chapter_3/). To evaluate
the accuracy of the classification, we will use the precision, recall, and f-measure.
Given a dataset with only two classes (positive and negative), we define the number
of true positive points (tp) the points correctly labeled as positive, the number of false
positive (fp) the points wrongly labeled as positive (negative points) and the number
of false negative (fn) the number of points erroneously assigned to the negative class.
Using these definitions, the precision, recall and f-measure can be calculated as:

http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/

Chapter 3

[103]

tpPrecision
tp fn

=
+

tpRecall
tp fn

=
+

()
()
2
precision recall

f measure
precision recall

⋅
− =

+

In a classification problem, a perfect precision (1.0) for a given class C means that
each point assigned to class C belongs to class C (there is no information about the
number of points from class C erroneously labeled), whereas a recall equal to 1.0
means that each point from class C was labeled as belonging to class C (but there is
no information about the other points wrongly assigned to class C).

Note that in the case of multiple classes, these metrics are usually calculated as many
times the number of labels, each time considering a class as the positive and all
others as the negative. Different averages over the multiple classes' metrics are then
used to estimate the total precision, recall, and f-measure.

The code to classify the cars dataset is as follows. First, we load all the libraries and
the data into a pandas data frame.

Supervised Machine Learning

[104]

The following are the feature values that are categorical:

buying 0 v-high, high, med, low

maintenance 1 v-high, high, med, low

doors 2 2, 3, 4, 5-more

persons 3 2, 4, more

lug_boot 4 small, med, big

safety 5 low, med, high

car evaluation 6 unacc,acc,good,vgood

These are mapped into numbers to be used in the classification algorithms:

Since we need to calculate and save the measures for all the methods, we write a
standard function, CalcMeasures, and divide the labels' vector Y from the features X:

Chapter 3

[105]

A 10 crossing validation folds has been used and the code is:

Supervised Machine Learning

[106]

The measures' values are stored in the data frames:

Chapter 3

[107]

Each measure has been evaluated four times—the number of car evaluation classes
that fill the arrays according to the index mapping:

'acc': 0, 'unacc': 2, 'good': 1, 'vgood': 3

The best model is SVM with rbf kernel (C=50), but random forest (50 trees) and
decision trees also return excellent results (measures over 0.9 for all the four classes).
Naive Bayes, logistic regression, and SVM with linear kernel (C=50) return poor
models, especially for the accurate, good, and very good classes, because there are
few points with those labels:

In percentage, the very good (v-good) and good are 3.993% and 3.762% respectively,
compared to 70.0223% of inaccurate and 22.222% of accurate. So, we can conclude
that these algorithms are not suitable for predicting classes that are scarcely
represented in a dataset.

Hidden Markov model
Although this method cannot be strictly considered a supervised learning algorithm,
it can be also used to perform something that is really similar to classification, so
we decided to include it here. To introduce the subject, we are going to present an
example. Consider the simplistic case of predicting whether a salesman in front
of you is lying or not (two states 0,1is i∈) by observing his glance: eye contact,
looking down, or looking aside (each observation Oi has the values 0, 1, and 2
respectively). Imagine a sequence of observations of the salesman's glances O=O0, O1,
O2, O3, O4,… are 0, 1, 0, 2,… We want to infer the transition matrix A between states
Si at consecutive times t, t+1 (or, in this example, two consecutive sentences):

()0.7 0.3
1, , 1

0.6 0.4 i ij ij i j
j

A a a a P s at t s at t
= = = = +

∑

Supervised Machine Learning

[108]

Any entry of A, aij represents the probability to stay at state Si at time t+1 given the
state Sj at time t. Therefore, 0.3 (a01) is the probability that the salesman is not lying
on the sentence at time t+1 given that he is lying on the sentence at time t, 0.6 (a10)
is vice versa, 0.7 (a00) represents the probability that the salesman is lying on the
sentence at time t and at time t+1 0.4 (a11) is the probability that he is not lying on
the sentence at time t+1 after he was sincere at time t. In a similar way, it is possible
to define the matrix B that correlates the salesman's intention with his three possible
behaviors:

() () () ()0.7 0.1 0.2
1,

0.1 0.6 0.3 j j j
j

B b k b k b k P k at t s at t
= = = =

∑

Any entry bj(k) is the probability to have observation k at time t given the state Sj
at time t. For example, 0.7 (b00), 0.1 (b01), and 0.2 (b02) are the probabilities that the
salesman is lying given the behavioral observations—eye contact, looking down,
and looking aside—respectively. These relationships are described in the following
figure:

Salesman behavior – two states hidden Markov model

Chapter 3

[109]

The initial state distribution of the salesman can be also defined: []0.6,0.4π = (he is
slightly more inclined to lie than to tell the truth in the first sentence at time 0). Note
that all of these matrices , ,A Bπ are row stochastic; that is, the rows sum to 1 and
there is no direct dependency on time. A hidden Markov model (HMM) is given by
the composition of the three matrices ((), ,A Bλ π=) that describe the relationship
between the known sequence of observations O=O0, O1,… OT-1 and the corresponding
hidden states sequence S=S0, S1,… ST-1. In general, the standard notation symbols
employed by this algorithm are summarized as follows:

• T is the length of the observation sequence O=O0, O1,… OT-1 and the hidden
states sequence S=S0, S1,… ST-1

• N is the number of possible (hidden) states in the model

• M is the number of the possible observation values: 0,1.., 1kO k M∈ −
• A is the state transition matrix
• B is the observation probability matrix
•	 π is the initial state distribution

In the preceding example, M=3, N=2, and we imagine to predict the sequence
of the salesman's intentions over the course of his speech (which are the hidden
states) S=S0, S1,… ST-1, observing the values of his behavior O=O0, O1,… OT-1. This is
achieved by calculating the probability of each state sequence S as:

() () () ()
0 0 0 1 2 10 1 1 1 1T T Ts s s s s s s s TP S b O a b O a b Oπ

− − − −= …

For instance, fixing T=4, S=0101, and O=1012:

() ()()()()()()() 60101 0.6 0.1 0.3 0.1 0.6 0.1 0.3 0.3 9.722 10p −= = ⋅

Supervised Machine Learning

[110]

In the same way, we can calculate the probability of all other combinations of hidden
states and find the most probable sequence S. An efficient algorithm for finding the
most probable sequence S is the Viterbi algorithm, which consists of computing the
maximum probability of the set of partial sequences from 0 to t until T-1. In practice,
we calculate the following quantities:

• ()0 0 0,.., 1i ib O i Nδ π= ∈ −
• For t=1,…,T-1 and i=0,…,N-1, the maximum probability of being at state

i at time t among the possible paths coming from different states j is

() ()11,.., 1t T ji i tj N
i max a b Oδ δ −∈ −

 = . The partial sequence associated with the

maximum of ()t iδ is the most probable partial sequence until time t.
• The final most probable sequence is associated with the maximum of the

probability at time T-1: ()1T iδ − .

For example, given the preceding model, the most likely sequence of length T=2 can
be calculated as:

• P(10)=0.1008
• P(00)=0.029

 ° So d1(0)=P(10)

• P(01)=0.0018
• P(11)=0.0096

 ° So d1(1)=P(11)

And the final most probable sequence is P(10) (a true sentence followed by a
false sentence).

Another way to think about the most likely sequence is by maximizing the number
of correct states; that is, consider for each time t the state i with the maximum
probability ()()ti

max Y i . Using an algorithm called backward algorithm, it is possible
to show that the probability of a given state i, ()tY i , is:

() () ()
()

t t
t

i i
Y i

P O
α β

λ
=

Chapter 3

[111]

Here:

•
() ()

1

1
0

N

T
i

P O iλ α
−

−
=

=∑

• () ()0 0 0,.., 1i ii b O i Nα π= ∈ − and () () ()
1

1
0

N

t t ji i t
j

i j a b Oα α
−

−
=

=

∑

Probabilities of the partial observation sequence until time t, where the HMM

is on state i: () ()0,.., ,t t ti P O O s iα λ= =

• () () ()
1

1 1
0

1
N

t ij j t t
j

i a b O j t Tβ β
−

+ +
=

= < −∑ and ()1 1 1,..., 1T i i Nβ − = ∈ −

Probability of the partial sequence after time t until T-1 given the state at time

t equal to i: () ()1 1,.., ,t t t ti P O O S iβ λ+ −= =
• The combination of the probabilities to stay on state i before and after time t

result in the value of () () ()
()

t t
t

i i
Y i

P O
α β

λ
= .

Note that the two methods of calculating the most likely sequence do not necessarily
return the same result.

The reverse problem—find the optimal HMM (), ,A Bλ π= given a sequence
O=O0,O1,…OT-1 and the values of the parameters N, M—is also solvable iteratively
using the Baum-Welch algorithm. Defining the probability of occurring at state i at
time t and to go at state j at time t+1 as:

() () () () ()
()

1 1
1, , , t ij j t t

t t t

i a b O j
Y i j P s i s j O

P O
α β

λ
λ
+ +

+= = = = where

() ()
1

0
,

N

t t
j

Y i Y i j
−

=

=∑ for 0,..., 2T T∈ − and () ()
1

1
T

TY i
P O
α

λ
−

− = .

Supervised Machine Learning

[112]

Then the Baum-Welch algorithm is as follows:

• Initialize (), ,A Bλ π=

• Calculate () () (), , ,t t ti i Y i jα β and () 0,.., 1tY i i N∈ −
• Recompute the model matrices as:

() ()
()

()
()

()

()

2 1

0 0
0 2 1

0 0

,
, ,

,

T T

t t k t
t t

ij j kT T

t t
t t

Y i j o o Y j
i Y i a b O

Y i j Y j

δ
π

− −

= =
− −

= =

= = =
∑ ∑

∑ ∑
 where

, 0,.., 1; 0,.., 1i j N k M∈ − ∈ − and ijδ is Kronacker symbol, which is equal

to 1 if i j= and 0 otherwise

• Iterate until the convergence of: () ()
1

1
0

N

T
t

P O iλ α
−

−
=

=∑

In the next section, we are going to show a piece of Python code that implements
these equations to test the HMM algorithm.

A Python example
As usual, the hmm_example.py file discussed hereafter is available at https://
github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/.

We start defining a class in which we pass the model matrices:

class HMM:

 def __init__(self):

 self.pi = pi

 self.A = A

 self.B = B

The Viterbi algorithm and the maximization of the number of correct states are
implemented in the following two functions:

 def ViterbiSequence(self,observations):

 deltas = [{}]

 seq = {}

 N = self.A.shape[0]

 states = [i for i in range(N)]

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_3/

Chapter 3

[113]

 T = len(observations)

 #initialization

 for s in states:

 deltas[0][s] = self.pi[s]*self.B[s,observations[0]]

 seq[s] = [s]

 #compute Viterbi

 for t in range(1,T):

 deltas.append({})

 newseq = {}

 for s in states:

 (delta,state) = max((deltas[t-1][s0]*self.A[s0,s]*self.B[
s,observations[t]],s0) for s0 in states)

 deltas[t][s] = delta

 newseq[s] = seq[state] + [s]

 seq = newseq

 (delta,state) = max((deltas[T-1][s],s) for s in states)

 return delta,' sequence: ', seq[state]

 def maxProbSequence(self,observations):

 N = self.A.shape[0]

 states = [i for i in range(N)]

 T = len(observations)

 M = self.B.shape[1]

 # alpha_t(i) = P(O_1 O_2 ... O_t, q_t = S_i | hmm)

 # Initialize alpha

 alpha = np.zeros((N,T))

 c = np.zeros(T) #scale factors

 alpha[:,0] = pi.T * self.B[:,observations[0]]

 c[0] = 1.0/np.sum(alpha[:,0])

 alpha[:,0] = c[0] * alpha[:,0]

 # Update alpha for each observation step

 for t in range(1,T):

 alpha[:,t] = np.dot(alpha[:,t-1].T, self.A).T *
self.B[:,observations[t]]

 c[t] = 1.0/np.sum(alpha[:,t])

Supervised Machine Learning

[114]

 alpha[:,t] = c[t] * alpha[:,t]

 # beta_t(i) = P(O_t+1 O_t+2 ... O_T | q_t = S_i , hmm)

 # Initialize beta

 beta = np.zeros((N,T))

 beta[:,T-1] = 1

 beta[:,T-1] = c[T-1] * beta[:,T-1]

 # Update beta backwards froT end of sequence

 for t in range(len(observations)-1,0,-1):

 beta[:,t-1] = np.dot(self.A, (self.B[:,observations[t]] *
beta[:,t]))

 beta[:,t-1] = c[t-1] * beta[:,t-1]

 norm = np.sum(alpha[:,T-1])

 seq = ''

 for t in range(T):

 g,state = max(((beta[i,t]*alpha[i,t])/norm,i) for i in
states)

 seq +=str(state)

 return seq

Since the multiplication of probabilities will result in an underflow problem, all the
at(i) and bt(i) have been multiplied by a constant such that for 0,.., 1i N∈ − :

•
()

0 1

0
0

1
N

j

c
jα

−

=

=

∑

•
() ()

() ()
1

1 11
0

1
0

1 , ' '
'

N

t t t t ji i tN
j

t ji i t
j

c i c a b O
j a b O

α α
α

−

− −−
=

−
=

= =∑
∑

 where

() ()0 0' i iα α=

Chapter 3

[115]

Now we can initialize the HMM model with the matrices in the salesman's intentions
example and use the two preceding functions:

pi = np.array([0.6, 0.4])

A = np.array([[0.7, 0.3],

 [0.6, 0.4]])

B = np.array([[0.7, 0.1, 0.2],

 [0.1, 0.6, 0.3]])

hmmguess = HMM(pi,A,B)

print 'Viterbi sequence:',hmmguess.ViterbiSequence(np.array([0,1,0,2]))

print 'max prob sequence:',hmmguess.maxProbSequence(np.array([0,1,0,2]))

The result is:

Viterbi: (0.0044, 'sequence: ', [0, 1, 0, 0])

Max prob sequence: 0100

In this particular case, the two methods return the same sequence, and you can easily
verify that by changing the initial matrices, the algorithms may lead to different
results. We obtain that the sequence of behaviors; eye contact, looking down, eye
contact, looking aside is likely associated with the salesman states' sequence; lie, not
lie, lie, lie with a probability of 0.0044.

It is also possible to implement the Baum-Welch algorithm to find the optimal HMM
given the sequence of observations and the parameters N and M. Here is the code:

 def train(self,observations,criterion):

 N = self.A.shape[0]

 T = len(observations)

 M = self.B.shape[1]

 A = self.A

 B = self.B

 pi = copy(self.pi)

 convergence = False

 while not convergence:

 # alpha_t(i) = P(O_1 O_2 ... O_t, q_t = S_i | hmm)

 # Initialize alpha

Supervised Machine Learning

[116]

 alpha = np.zeros((N,T))

 c = np.zeros(T) #scale factors

 alpha[:,0] = pi.T * self.B[:,observations[0]]

 c[0] = 1.0/np.sum(alpha[:,0])

 alpha[:,0] = c[0] * alpha[:,0]

 # Update alpha for each observation step

 for t in range(1,T):

 alpha[:,t] = np.dot(alpha[:,t-1].T, self.A).T *
self.B[:,observations[t]]

 c[t] = 1.0/np.sum(alpha[:,t])

 alpha[:,t] = c[t] * alpha[:,t]

 #P(O=O_0,O_1,...,O_T-1 | hmm)

 P_O = np.sum(alpha[:,T-1])

 # beta_t(i) = P(O_t+1 O_t+2 ... O_T | q_t = S_i , hmm)

 # Initialize beta

 beta = np.zeros((N,T))

 beta[:,T-1] = 1

 beta[:,T-1] = c[T-1] * beta[:,T-1]

 # Update beta backwards froT end of sequence

 for t in range(len(observations)-1,0,-1):

 beta[:,t-1] = np.dot(self.A, (self.B[:,observations[t]] *
beta[:,t]))

 beta[:,t-1] = c[t-1] * beta[:,t-1]

 gi = np.zeros((N,N,T-1));

 for t in range(T-1):

 for i in range(N):

 gamma_num = alpha[i,t] * self.A[i,:] *
self.B[:,observations[t+1]].T * \

 beta[:,t+1].T

 gi[i,:,t] = gamma_num / P_O

 # gamma_t(i) = P(q_t = S_i | O, hmm)

Chapter 3

[117]

 gamma = np.squeeze(np.sum(gi,axis=1))

 # Need final gamma element for new B

 prod = (alpha[:,T-1] * beta[:,T-1]).reshape((-1,1))

 gamma_T = prod/P_O

 gamma = np.hstack((gamma, gamma_T)) #append one Tore to
gamma!!!

 newpi = gamma[:,0]

 newA = np.sum(gi,2) / np.sum(gamma[:,:-1],axis=1).
reshape((-1,1))

 newB = copy(B)

 sumgamma = np.sum(gamma,axis=1)

 for ob_k in range(M):

 list_k = observations == ob_k

 newB[:,ob_k] = np.sum(gamma[:,list_k],axis=1) / sumgamma

 if np.max(abs(pi - newpi)) < criterion and \

 np.max(abs(A - newA)) < criterion and \

 np.max(abs(B - newB)) < criterion:

 convergence = True;

 A[:],B[:],pi[:] = newA,newB,newpi

 self.A[:] = newA

 self.B[:] = newB

 self.pi[:] = newpi

 self.gamma = gamma

Note that the code uses the shallow copy from the module copy, which creates a
new container populated with references to the contents of the original object (in this
case, pi, B). That is, newpi is a different object from pi but newpi[0] is a reference
of pi[0]. The NumPy squeeze function instead is needed to drop the redundant
dimension from a matrix.

Supervised Machine Learning

[118]

Using the same behaviors sequence O=0, 1, 0, 2, we obtain that the optimal model is
given by:

[]1.00.0π = ,
0.0 1.0
1.0 0.0

A
=

,
1.0 0.0 0.0
0.0 0.38 0.62

B
=

This means that the state sequence must start from a true salesman's sentence
and continuously oscillate between the two states lie and not lie. A true salesman's
sentence (not lie) is certainly related to the eye contact value, while a lie is related to
the looking down and looking aside behaviors.

In this simple introduction on HMM, we have assumed that each observation is a
scalar value, but in real applications, each Oi is usually a vector of features. And
usually, this method is used as a classification training as many HMM li, as classes to
predict and then a test time chooses the class with the highest ()iP O λ . Continuing
with this example, we can imagine building a true machine to test each salesman we
talk to. Imagine that for each sentence (observation) Oi of our speaker, we can extract
three features glances with three possible values ei (eye contact, looking down, and
looking aside), voice sound vi with three possible values (too loud, too low, and flat),
and hand movement hi with two possible values (shaking and calm) Oi=(ei, vi, hi). At
training time, we ask our friend to tell lies and we use these observations to train an
HMM l0 using Baum-Welch. We repeat the training process but with true sentences
and train l1. At test time, we record the sentence of the salesman O and calculate
both: ()0P O λ , ()1P O λ . The class prediction will be the one with the highest
probability.

Note that HMM has been applied in various fields, but the applications in which it
performs quite well are speech recognition tasks, handwritten character recognition,
and action recognition.

Summary
In this chapter, the major classification and regression algorithms, together with
the techniques to implement them, were discussed. You should now be able to
understand in which situation each method can be used and how to implement it
using Python and its libraries (sklearn and pandas).

In the next chapter, we will cover the most relevant techniques used to learn from
web data (web data mining).

[119]

Web Mining Techniques
Web data mining techniques are used to explore the data available online and
then extract the relevant information from the Internet. Searching on the web is a
complex process that requires different algorithms, and they will be the main focus
of this chapter. Given a search query, the relevant pages are obtained using the data
available on each web page, which is usually divided in the page content and the
page hyperlinks to other pages. Usually, a search engine has multiple components:

• A web crawler or spider for collecting web pages
• A parser that extracts content and preprocesses web pages
• An indexer to organize the web pages in data structures
• A retrieval information system to score the most important documents

related to a query
• A ranking algorithm to order the web pages in a meaningful manner

These parts can be divided into web structure mining techniques and web content
mining techniques.

The web crawler, indexer, and ranking procedures refer to the web structure (the
network of hyperlinks). The other parts (parser and retrieval system) of a search
engine are web content analysis methods because the text information on web pages
is used to perform such operations.

Furthermore, the content of a collection of web pages can be further analyzed using
some natural language processing techniques, such as latent Dirichlet allocation
opinion mining or sentiment analysis tools. These techniques are especially
important for extracting subjective information about web users, and so they are
widely found in many commercial applications, from marketing to consultancy.
These sentiment analysis techniques will be discussed at the end of the chapter.
Now we will start discussing the web structure mining category.

Web Mining Techniques

[120]

Web structure mining
This field of web mining focuses on the discovery of the relationships among web
pages and how to use this link structure to find the relevance of web pages. For the
first task, usually a spider is employed, and the links and the collected web pages
are stored in a indexer. For the the last task, the web page ranking evaluates the
importance of the web pages.

Web crawlers (or spiders)
A spider starts from a set of URLs (seed pages) and then extracts the URL inside
them to fetch more pages. New links are then extracted from the new pages and the
process continues until some criteria are matched. The unvisited URLs are stored in
a list called frontier, and depending on how the list is used, we can have different
crawler algorithms, such as breadth-first and preferential spiders. In the breadth-first
algorithm, the next URL to crawl comes from the head of the frontier while the new
URLs are appended to the frontier tail. Preferential spider instead employs a certain
importance estimate on the list of unvisited URLs to determine which page to crawl
first. Note that the extraction of links from a page is performed using a parser, and
this operation is discussed in more detail in the related paragraph of the web content
mining section.

A web crawler is essentially a graph search algorithm in which the structure of the
neighborhood of the starting pages is retrieved, following certain criteria such as
the maximum number of links to follow (depth of the graph), maximum number
of pages to crawl, or time limit. A spider can then extract a portion of the Web that
has interesting structures, such as hubs and authorities. A hub is a web page that
contains a large number of links, while an authority is defined as, a page, with a
large number of times that its URL occurs on other web pages (it is a measure of
the page's popularity). A popular Python implementation of the crawler is given
by the Scrapy library, which also employs concurrency methods (asynchronous
programming using Twisted) to speed up operations. A tutorial on this module is
given in Chapter 7, Movie Recommendation System Web Application when the crawler
will be used to extract information about movie reviews.

Chapter 4

[121]

Indexer
An indexer is a way to store web pages found by the crawler in a structured
database to allow subsequent fast retrieval on a given search query. The simplest
indexing approach is to directly store all the pages and, at query time, just scan for
all the documents that contain the keywords in the query. However, this method
is not feasible if the number of pages is large (which in practice, it is) due to high
computational costs. The most common method to speed up the retrieval is called
inverted index scheme, which is used by the most popular search engines.

Given a set of web pages p1, …, pk and a vocabulary V containing all the words
iw V∈ in the pages, the inverted index database is obtained by storing lists such as

1 31 : ,p pw id id , …,
2 7

: ,i p pw id id ,

Here,
jpid is the ID of the web page j. Extra information can be stored for each

word, for example, the frequency count of the word or its position on each page.
The implementation of the indexer is beyond the scope of this book, but the general
concepts have been described in this paragraph for completeness.

Therefore, a search query with a list of words will retrieve all the inverted lists
related to each word and then merge the lists. The order of the final lists will be
chosen using the ranking algorithm together with an information retrieval system to
measure the relevance of the documents to the query.

Ranking – PageRank algorithm
A ranking algorithm is important because the usual number of web pages that a
single information retrieval query can return may be huge, so there is a problem
of how to choose the most relevant pages. Furthermore, the information retrieval
model can easily be spammed by just inserting many keywords into the page to
make the page relevant to a large number of queries. So, the problem to evaluate the
importance (that is, ranking score) of a web page on the Internet has been addressed
considering the fact that the web has a graph in which the hyperlinks—links from a
page to another—are the primary source of information to estimate the relevance of
web pages. The hyperlinks can be divided as:

• in-links of page i: hyperlinks that point to page i
• out-links of page i: hyperlinks that point to other pages from page i

Web Mining Techniques

[122]

Intuitively, the more in-links a web page has, the more important the page should
be. The study of this hyperlink structure is part of social network analysis, and many
algorithms have been used and proposed. But for historical reasons, we will explain
the most well known algorithm, called PageRank, which was presented by Sergey
Brin and Larry Page (the founders of Google) in 1998. The whole idea is to calculate
the prestige of a page as the sum of the prestiges of the pages that point to it. If the
prestige of a page j is P(j) it is equally distributed to all the pages Nj that it points
to so that each out-link receives a portion of prestige equal to P(j)|Nj. Formally, the
prestige or page rank score of a page i can be defined as:

() ()ji
j

P i A P j=∑

Here,
1

ji
j

A
N

= if page j points to page i; otherwise it is equal to 0. Aij is called

adjacency matrix and it represents the portion of prestige that propagates from node

j to node i. Considering N total nodes in the graph, the preceding equation can be

rewritten in matrix form:

() ()(), 1 ,..,
TTP A P P P P N= =

Note that this equation is equivalent to an eigensystem with eigenvalue 1λ =
if the adjacency matrix satisfies certain conditions. Another way to interpret the
preceding equation is to use the Markov chain terminology—the entry Aij becomes
the transition probability from node j to node i and the prestige of node i, p(i), is
the probability to visit node i. In this scenario, it may happen that two nodes (or
more) point to each other but do not point to other pages. Once one of these two
nodes has been visited, a loop will occur and the user will be trapped in it. This
situation is called rank sink, (the matrix A is called periodic) and the solution is to
add a transition matrix term that allows jumping from each page to another page at
random without following the Markov chain described by A:

()1 Td E
P d A P

N
−

= +

Chapter 4

[123]

Here, E=eeT is a matrix of one entry of dimensions N´N (e is a unit vector filled
with 1), and d (also called the damping factor) is the probability to follow the
transition given by the transition matrix A. (1-d) is the probability to visit a page
randomly. In this final form, all the nodes are linked to each other so that even if
the adjacency matrix has a row with many 0 entries for a particular node s, Asj, there

is always a small probability equal to
1
N

 that s is visited from all the N nodes in

the graph. Note that A has to be stochastic, which means each row has to sum to 1;
1 1, ,ij

j
A i N= ∀∑ … (at least one entry per row different from 0 or at least one out-

link per page). The equation can be simplified by normalizing the P vector as eT P=N:

() () () ()
1

1 1 1,..,
N

T
ji

j
P d e d A P P i d d A P j i N

=

= − + → = − + ∀∑

This can be solved using the power iteration method. This algorithm will be used in
Chapter 8, Sentiment Analyser Application on Movie Reviews to implement an example
of a movie review sentiment analysis system. The main advantages of this algorithm
is that it does not depend on the query (so the PageRank scores can be computed
offline and retrieved at query time), and it is very robust to spamming since it is not
feasible for a spammer to insert in-links to their page on influential pages.

Web content mining
This type of mining focuses on extracting information from the content of web
pages. Each page is usually gathered and organized (using a parsing technique),
processed to remove the unimportant parts from the text (natural language
processing), and then analyzed using an information retrieval system to match the
relevant documents to a given query. These three components are discussed in the
following paragraphs.

Web Mining Techniques

[124]

Parsing
A web page is written in HTML format, so the first operation is to extract the
relevant pieces of information. An HTML parser builds a tree of tags from which
the content can be extracted. Nowadays, there are many parsers available, but as an
example, we use the Scrapy library see Chapter 7, Movie Recommendation System Web
Application which provides a command-line parser. Let's say we want to parse the
main page of Wikipedia, https://en.wikipedia.org/wiki/Main_Page. We simply
type this in a terminal:

scrapy shell 'https://en.wikipedia.org/wiki/Main_Page'

A prompt will be ready to parse the page using the response object and the xpath
language. For example we want to obtain the title's text:

In [1]: response.xpath('//title/text()').extract()

Out[1]: [u'Wikipedia, the free encyclopedia']

Or we want to extract all the embedded links in page (this operation is needed for
the crawler to work), which are usually put on <a>, and the URL value is on an href
attribute:

In [2]: response.xpath("//a/@href").extract()

Out[2]:

[u'#mw-head',

 u'#p-search',

 u'/wiki/Wikipedia',

 u'/wiki/Free_content',

 u'/wiki/Encyclopedia',

 u'/wiki/Wikipedia:Introduction',

…

 u'//wikimediafoundation.org/',

 u'//www.mediawiki.org/']

Note that a more robust way to parse content can be used since the web pages are
usually written by non-programmers, so the HTML may contain syntax errors that
browsers typically repair. Note also that web pages may contain a large amount of
data due to advertisements, making the parsing of relevant information complicated.
Different algorithms have been proposed (for instance, tree matching) to identify
the main content of a page but no Python libraries are available at the moment,
so we have decided not to discuss this topic further. However, note that a nice
parsing implementation for extracting the body of a web article can be found in the
newspaper library and it will also be used in Chapter 7, Movie Recommendation System
Web Application.

https://en.wikipedia.org/wiki/Main_Page

Chapter 4

[125]

Natural language processing
Once the text content of a web page has been extracted, the text data is usually
preprocessed to remove parts that do not bring any relevant information. A text is
tokenized, that is, transformed into a list of words (tokens), and all the punctuation
marks are removed. Another usual operation is to remove all the stopwords, that
is, all the words used to construct the syntax of a sentence but not containing text
information (such as conjunctions, articles, and prepositions) such as a, about, an, are,
as, at, be, by, for, from, how, in, is, of, on, or, that, the, these, this, to, was, what, when, where,
who, will, with, and many others.

Many words in English (or any language) share the same root but have different
suffixes or prefixes. For example, the words think, thinking, and thinker all share the
same root—think indicating that the meaning is the same—but the role in a sentence
is different (verb, noun, and so on). The procedure to reduce all the words in a set
to its roots it is called stemming, and many algorithms have been invented to do
so (Porter, Snowball, and Lancaster). All of these techniques are parts of a broader
range of algorithms called natural language processing, and they are implemented
in Python on the nltk library (installed as usual through sudo pip install nltk).
As an example, the following code preprocesses a sample text using the techniques
described previously (using the Python interface terminal):

Web Mining Techniques

[126]

Note that the stopwords list has been downloaded using the nltk dowloader
nltk.download('stopwords').

Information retrieval models
The information retrieval methods are needed to find the most relevant documents
to a given query. The words contained in the web pages can be modeled using
different approaches such as Boolean models, vector space models, and probabilistic
models, and in this book, we have decided to discuss the vector space models and
how to implement them. Formally, given a vocabulary of V words, each web page
di (or document) in a collection of N pages, can be thought of as a vector of words,

1i V,....,i id w w= , where each word j belonging to the document i is represented
by wij, which can be either a number (weight) or a vector depending on the chosen
algorithm:

• Term frequency-inverse document frequency (TF-IDF), wij, is a real number

• Latent Semantic Analysis (LSA), wij, is a real number (representation
independent of the document i)

• Doc2Vec (or word2vec), wij, is a vector of real numbers (representation
independent of the document i)

Since the query can also be represented by a vector of words, 1 V,...q qq w w= , the
web pages most similar to the vector q are found by calculating a similarity measure
between the query vector and each document. The most used similarity measure is
called cosine similarity, for any document i given by:

1

2 2

1 1

V

ij jq
ji

V V
i

ij qj
j j

w w
d q
d q

w w

=

= =

⋅
=

∑

∑ ∑

Note that there are other measures used in literature (okapi and pivoted
normalization weighting), but for the purpose of this book, they are not necessary.

The following sections will give some details about the three methods before being
applied in a text case in the final paragraph of the section.

Chapter 4

[127]

TF-IDF
This method calculates wij, taking into account the fact that a word that appears
many times and in a large number of pages is likely to be less important than a
word that occurs many times but only in a subset of documents. It is given by the
multiplication of two factors:

ij ij iw tf x idf= where:

•
1i V,..,

ij
ij

i

f
tf

max f f
= is the normalized frequency of the word j in the

document I

• logi
j

Nidf
df

= is the inverse document frequency and dfj is the number of

web pages that contain the word j

Latent Semantic Analysis (LSA)
The name of this algorithm comes from the idea that there is a latent space in which
each word (and each document) can be efficiently described, assuming that words
with similar meanings also occur in similar text positions. Projection on this subspace
is performed using the (truncated) SVD method already discussed in Chapter 2,
Machine Learning Techniques – Unsupervised Learning. We contextualize the method
for LSA as follows: the web pages are collected together in matrix X (V ´N), in which
each column is a document:

T
t t tX U V= ∑

Here, Ut (V ´d) is the matrix of the words projected in the new latent space with d

dimensions, T
t tV∑ (d ´N) is the transpose matrix of the documents transformed into

the subspace, and t∑ (d´d) is the diagonal matrix with singular values. The query

vector itself is projected into the latent space by:

1
t t tq qU −= Σ

Web Mining Techniques

[128]

Now, each document represented by each row of Vt can be compared with qt
using the cosine similarity. Note that the true mathematical representation of the
documents on the latent space is given by t tVΣ (not Vt) because the singular values
are the scaling factors of the space axis components and they must be taken into
account. Therefore, this matrix should be compared with

t tqΣ . Nevertheless, it
usually computes the similarity between Vt and qt, and in practice, it is still unknown
which method returns the best results.

Doc2Vec (word2vec)
This method represents each word j, wj, as a vector

jwv but independent of the
document di it occurs in. Doc2Vec is an extension of the word2vec algorithm
originally proposed by Mikolov and others, and it employs neuron networks and
backpropagation to generate the word (and document) vectors. Due to the increasing
importance of neuron networks (especially deep learning) in many machine
learning applications, we decided to include the main concepts and formulas of
this quite advanced method here to give you an introduction to a subject that will
become extremely important in the future of machine learning in various fields. The
following description is based on the paper Rong (2014) and Le and Mikolov (2014),
and the notation also reflects the name currently used in literature.

Word2vec – continuous bag of words and
skip-gram architectures
Each word j in the vocabulary V is represented by a vector of length |V|, with
binary entries xj=(x1j, …, xVj), where only xjj=1; otherwise, 0. The word2vec method
trains a single (hidden) layer of N neurons (weights), choosing between two different
network architectures (shown in the following figure). Note that both architectures
have only one layer of N neurons or weights, h. This means that the method has to
be considered shallow learning and not deep, which typically refers to networks with
many hidden layers. The Continuous Bag Of Words (CBOW) method (displayed to
the right in the following figure) trains the model using a set of C words as an input
called context trying to predict the word (target) that occurs adjacent to the input text.
The reverse approach is called Skip-gram, in which the input is the target word and
the network is trained to predict the context set (displayed to the left in the following
figure). Note that C is called the window parameter and it sets how far from the
target word the context words are selected:

Chapter 4

[129]

Skip-gram (left) and CBOW (right) architectures of the word2vec algorithm; figures taken from word2vec
Parameter Learning Explained by X Rong (2015)

In both cases, the matrix W transforms the input vectors into the hidden layer and
W' transforms from the hidden layer to the output layer y, where the target (or
context) is evaluated. In the training phase, the error from the true target (or context)
is computed and used to calculate a stochastic gradient descent to update both the
matrices W and W'. We will give a more mathematical description of the CBOW
method in the following section. Note that the Skip-gram equations are similar and
we will refer to the Rong (2015) paper for further details.

Mathematical description of the CBOW model
Starting from the input layer, the hidden layer h can be obtained by computing,

() ()11
1 1.. ..

cC w w Ch W x x v v v
C C

= ⋅ + + = + + = , where
iwv is a vector of length N

that represents the word wi on the hidden layer and c cw v→ is the average of the

C context vectors
iwv . Choosing a target word wj, the score at the output layer uj is

obtained by multiplying the vector
jwv′ (the j-th column of W') by h:

jj wu v h′= ⋅

Web Mining Techniques

[130]

This is not the final value on the output layer yj because we want to evaluate the
posterior conditional probability to have the target word wj given the context C
expressed by the softmax formula:

()1,

1 1

| .,
T

j j C

T
i i C

u v v

j j C V V
u v v

i i

e ey p w w w
e e

′

′

= =

= = =

∑ ∑

Now the training objective is to maximize this probability

for all the words in the vocabulary, which is equivalent to

() ()1, 1
1

| ., log | ,., log wi

Mj

V
v hT

j C j C wj i
max p w w w E max p w w w v h e ′ ⋅

=

′→ = − = − ⋅ + ∑
,

where ()j Mj

T T
w wj

max v h v h′ ′⋅ = ⋅ and the index jM represents the vector of W' in

which the product is maximum, that is, the most probable target word.

The stochastic gradient descent equations are then obtained by calculating the
derivatives of E with respect to the entries of W (wij) and W' (w'ij). The final
equations for each output target word wj are:

1,...
j j

new old
w w

j

Ev v h j V
u

α ∂′ ′= − ∀ ∈
∂

1 1,...,
j j

new old
w w

Ev v j C
C h

α ∂′ ′= − ∀ ∈
∂

 where
1

,...,
N

E E E
h h h

 ∂ ∂ ∂
= ∂ ∂ ∂

 and a is the learning

rate of the gradient descent. The derivative
, Mj j j

j

E y
u

δ∂
= −

∂
 represents the error of

the network with respect to the true target word so that the error is back propagated

on the system, which can learn iteratively. Note that the vectors 1,..,
jwv j V∀ are

the usual word representations used to perform the semantic operations.

Chapter 4

[131]

Further details can be found in the Rong (2015) paper.

Doc2Vec extension
As explained in Le and Mikolov (2014), Doc2Vec is a natural extension of the
word2vec method in which a document is considered as an additional word vector.
So in the case of the CBOW architecture, the hidden layer vector h is just the average
of the context vectors and the document vector di:

() ()11
1 1.. ..

c iC i w w d Ch W x x d v v v v
C C

= ⋅ + + + = + + + =

This architecture is shown in the following figure, and it is called the distributed
memory model (DM) because the document di vector just remembers the
information of the document not represented by the context words. The vector

idv
is shared with all the context words sampled from the document di but the matrix W
(and W') is the same for all the documents:

A distributed memory model example with a context of three words (window=3); figure taken from Distributed
Representations of Sentences and Documents by Le and Mikolov (2014)

The other proposed architecture is called distributed bag of words (DBOW), which
considers only a document vector in the input layer and a set of context words
sampled from the document in the output layer. It has been shown that the DM
architecture performs better than DBOW, and it is therefore the default model in the
gensim library implementation. The reader is advised to read the paper of Le and
Mikolov (2014) for further details.

Web Mining Techniques

[132]

Movie review query example
To show in action the three information retrieval methods discussed previously, we
use the IMBD movie reviews in the polarity dataset v2.0 and Pool of 27886 unprocessed
html files at http://www.cs.cornell.edu/people/pabo/movie-review-data/,
provided by Bo Pang and Lillian Lee (the dataset and the code are also stored in the
GitHub account of the author at https://github.com/ai2010/machine_learning_
for_the_web/tree/master/chapter_4/. Download and unzip the movie.zip file
from the website (called polarity_html.zip), which creates the movie folder with
all the web page movie reviews (about 2000 files). First of all, we need to prepare the
data from the files:

This time we use BeautifulSoup to parse the title of the movie from each HTML web
page and create a dictionary, moviedict. The polarity dataset v2.0.tar.gz
contains a folder, review_polarity, which is inside the txt_sentoken/ folder that
split the positive and negative reviews into two separate subfolders (pros and cons).
These files are preprocessed using the following code:

http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_4/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_4/

Chapter 4

[133]

Now all the 2,000 reviews are stored in the tot_textreviews list and the
corresponding titles in tot_titles. The TF-IDF model can be trained using sklearn:

After the PreprocessTfidf function, apply all the preprocessing techniques
(removing stop words, tokenizing, and stemming) to each document. In the same
way, we can train the LSA model using the gensim library, specifying 10 latent
dimensions:

Web Mining Techniques

[134]

Note that the GenSimCorpus function just preprocesses the documents with the usual
techniques and transforms them into a format that the gensim LSA implementation
can read. From the lsi object, it is possible to obtain the matrices U, V, and S that are
needed to transform the query into the latent space:

Also the indexed dictionary of words, dict_words, has been calculated to transform
a query word into the corresponding index word in dict_corpus.

The last model to train is Doc2Vec. First, we prepare the data in a format that the
gensim Doc2Vec implementation can handle:

Chapter 4

[135]

Each review has been placed in a namedtuple object, which contains the words
preprocessed by the PreprocessDoc2Vec function (stopwords removed and
tokenization performed) and the tag that is the name of the file. Note that we chose
not to apply a stemmer because the results are generally better without it (the reader
can test the results by applying the stemmer, setting the Boolean flag doc2vecstem to
True). The Doc2Vec training is finally performed by the following code:

We set the DM architecture (dm=1), the hidden layer with 500 dimensions (size),
a window size of 10 words, and all the words that occur at least once have been
taken into account by the model (min_count=1).The other parameters are related
to the efficiency optimization method (negative for negative sampling and hs for
hierarchical softmax). The training lasted for 20 epochs, with a learning rate equal
to 0.99.

We can now verify which results each method returns, defining a query to retrieve
all the web documents related to sci-fi movies, that is, movies usually described by
this list of words:

The TF-IDF method returns the five most similar web pages using the following script:

Web Mining Techniques

[136]

Note that the model uses a sparse matrix format to store data, so the cosine_
similarity function converts the vectors into regular vectors. Then it computes the
similarity. In a similar way, the query is converted in a qk in LSA terminology and the
five most similar web pages are printed out:

Finally, the doc2vec model transforms the query list into a vector using the infer_
vector function, and the most similar reviews are returned by the most_similar
function:

Note that the random parameter of the model needs to be set up to a fixed value to
return deterministic results whenever an optimization approach is used (negative
sampling or hierarchical softmax). The results are as follows:

• TF-IDF:

Chapter 4

[137]

• LSA:

• Doc2vec:

All three methods show movies related to the query. Interestingly, TF-IDF performs
better than the more advanced LSA and Doc2Vec algorithms because In the Heat of
the Night, Pokemon, Rocky Horror Picture Show, and Wild Things are not related to the
query compared with the TF-IDF results which show only one movie (No Telling) as
unrelated. The movies Charlie's Angels and Batman & Robin are action movies, so they
are mostly related to the single query word action. Doc2Vec returns the worst results
mostly because the training dataset is too small to learn good vector representations
(as an example, Google released a word2vec trained dataset based on billions of
documents, or more). The website http://www.cs.cornell.edu/people/pabo/
movie-review-data/ provides a larger dataset, so the reader can try to train
Doc2Vec with more data as an exercise.

Postprocessing information
Once the web pages are collected from the Web, there are natural language
processing algorithms that are able to extract relevant information for different
commercial purposes apart from building a web search engine. We will discuss here
algorithms that are able to extract the main topics on the collection of documents
(latent Dirichlet analysis) and to extract the sentiment or opinion of each web page
(opinion mining techniques).

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/

Web Mining Techniques

[138]

Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) is a natural language processing algorithm that
belongs to the generative model category. The technique is based on the observations
of some variables that can be explained by other underlined unobserved variables,
which are the reasons the observed data is similar or different.

For example, consider text documents in which words are the observations. Each
document can be the result of a mixture of topics (unobserved variables) and each
word refers to a specific topic.

For instance, consider the two following documents describing two companies:

• doc1: Changing how people search for fashion items and, share and buy
fashion via visual recognition, TRUELIFE is going to become the best
approach to search the ultimate trends …

• doc2: Cinema4you enabling any venue to be a cinema is a new digital
filmed media distribution company currently in the testing phase. It applies
technologies used in Video on Demand and broadcasting to ...

LDA is a way of automatically discovering latent topics that these documents
contain. For example, given these documents and asked for two topics, LDA might
return the following words associated with each topic:

• topic 1: people Video fashion media…
• topic 2: Cinema technologies recognition broadcasting…

Therefore, the second topic can be labeled as technology while the first as business.

Documents are then represented as mixtures of topics that spit out words with
certain probabilities:

• doc1: topic 1 42%,topic 2 64%
• doc2: topic 1 21%, topic 2 79%

This representation of the documents can be useful in various applications such as
clustering of pages in different groups, or to extract the main common subjects of a
collection of pages. The mathematical model behind this algorithm is explained in
the next paragraph.

Chapter 4

[139]

Model
Documents are represented as random mixtures over latent topics, where each topic
is characterized by a distribution over words. LDA assumes the following process for
a corpus consisting of M documents, d=(d1, …, dM), with each i containing Ni words.
If V is the length of the vocabulary, a word of document i is represented by a vector
wi of length V, where only an element wi

v=1 and the others are 0:

()0, , , 1,. ...v
i iw w= =

The number of latent dimensions (topics) is K, and for each document, ()11,.. Nz z z=
is the vector of topics associated with each word wi, where zi is a vector of 0's of
length K except for the element j, zi

j=1, that represents the topic wi has been drawn
from.

b indicates the K ´V matrix, where bij represents the probability that each word j in
the vocabulary is drawn from topic i: ()1| 1j i

ij p w zβ = = = .

So, each row i of b is the word's distribution of topic i, while each column j is the
topic's distribution of word j. Using these definitions, the process is described as
follows:

1. From a chosen distribution (usually Poisson), draw the length of each
document Ni.

2. For each document di, draw the topic distribution iq , as a Dirichlet
distribution Dir(a), where 1,...,i M∈ and a is a parameter vector of length K

such that ()
()

() 10

0

0

| i

K

d K
d

i iK d
d

d
d

p α
α

θ α θ
α

−=

=

=

 Γ
 =
Γ

∑
∏

∏
.

3. For each document di, for each word n, draw a topic from the multinomial
()n iz Multinomial θ∼ .

4. For each document di, for each word n, and for each topic zn, draw a word wn
from a multinomial given by the row zn of b,

nn zw β∼ .

Web Mining Techniques

[140]

The objective of the algorithm is to maximize the posterior probability for each
document:

() ()
()
, , | ,

, | , ,
| ,

i i
i i

i

p z d
p z d

p d
θ α β

θ α β
α β

=

Applying the conditional probability definition, the numerator becomes the
following:

() () () (), , | , | , | |i i i i ip z d p d z p z pθ α β β θ θ α=

So, the probability that the document i is given by topic vector z and word probability
matrix b can be expressed as a multiplication of the single word probabilities:

() ,
1

| ,
i

n n

N

i z w
n

p d z β β
=

=∏

Considering that zn is a vector with only one component j different from 0, zj
n=1,

then () ()| i i j
p z θ θ= . Substituting these expressions on the posterior probability

formula:

()
()

() ()10
,

0 1

0

, , | ,
i

i

n n n

K

d NK
d

i i i z w iK d z
d n

d
d

p z d α
α

θ α β θ β θ
α

−=

= =

=

 Γ
 =

 Γ

∑
∏ ∏

∏

Chapter 4

[141]

The denominator of (1) is obtained simply by integration over qi and summation
over z. The final values of the topic distribution qi and the words per topic
distribution (rows of b) are obtained by calculating this probability by approximated
inference techniques; those are beyond the scope of this book.

The parameter a is called the concentration parameter, and it indicates how much the
distribution is spread over the possible values. A concentration parameter of 1 (or k,
the dimension of the Dirichlet distribution, by the definition used in topic modeling
literature) results in all sets of probabilities being equally probable. Meanwhile, in
the limit as the concentration parameter tends towards zero, only distributions with
nearly the entire mass concentrated on one of their components are likely (the words
are less shared among different topics and they concentrate on a few topics).

As an example, a 100,000-dimension categorical distribution has a vocabulary of
100,000 words even though a topic may be represented by a couple of hundred
words. As a consequence, typical values for the concentration parameter are between
0.01 and 0.001, or lower if the vocabulary's size is millions of words or higher.

According to L. Li and Y. Zhang's paper An empirical study of text classification using
Latent Dirichlet Allocation, LDA can be used as an effective dimension reduction
method for text modeling. However, even though the method has performed well
in various applications, there are certain issues to consider. The initialization of the
model is random, which means it can lead to different results in each run. Also, the
choice of concentration parameters is important, but there is no standard method to
choose them.

Web Mining Techniques

[142]

Example
Consider again the movie reviews' web pages, textreviews, already preprocessed
in the Movie review query example section, and LDA is applied to test whether it
is possible to gather reviews on different topics. As usual, the following code is
available in postprocessing.ipynb at https://github.com/ai2010/machine_
learning_for_the_web/tree/master/chapter_4/:

As usual we have transformed each document in tokens (a different tokenizer has
been used) and the stop words have been removed. To achieve better results, we
filter out the most frequent words (such as movie and film) that do not add any
information to the pages. We ignore all the words with more than 1,000 occurrences
or observed less than three times:

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_4/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_4/

Chapter 4

[143]

Now we can train the LDA model with 10 topics (passes is the number of training
passes through the corpus):

The code returns the following 10 most probable words associated with each topic:

Although not all the topics have an easy interpretation, we can definitely see that
topic 2 is associated with the words disney, mulan (a Disney movie), love, and
life is a topic about animation movies, topic 6 is associated with the words action,
alien, bad, and planet is related to fantasy sci-fi movies. In fact, we can query all
the movies with most probable topic equal to 6 like this:

Web Mining Techniques

[144]

This will return:

Rock Star (2001)

Star Wars: Episode I - The Phantom Menace (1999)

Zoolander (2001)

Star Wars: Episode I - The Phantom Menace (1999)

Matrix, The (1999)

Volcano (1997)

Return of the Jedi (1983)

Daylight (1996)

Blues Brothers 2000 (1998)

Alien³ (1992)

Fallen (1998)

Planet of the Apes (2001)

Most of these titles are clearly sci-fi and fantasy movies, so the LDA algorithm
clusters them correctly.

Note that with the documents' representations in the topic space (lda_lfq[corpus]),
it would be possible to apply a cluster algorithm (see Chapter 2, Machine Learning
Techniques – Unsupervised Learning) but this is left to the reader as an exercise. Note
also that each time the LDA algorithm is run, it may lead to different results due to
the random initialization of the model (that is, it's normal if your results are different
from what it is shown in this paragraph).

Opinion mining (sentiment analysis)
Opinion mining or sentiment analysis is the field of study of text to extract the
opinion of the writer, which can usually be positive or negative (or neutral). This
analysis is particularly useful especially in marketing to find the public opinion
on products or services. The standard approach is to consider the sentiment (or
polarity), negative or positive, as the target of a classification problem. A dataset of
documents will have as many features as the number of different words contained
in the vocabulary, and classification algorithms such as SVM and Naive Bayes
are typically used. As an example, we consider the 2,000 movie reviews already
used for testing LDA and information retrieval models that are already labeled
(positive or negative). All of the code discussed in this paragraph is available on
the postprocessing.ipynb IPython notebook at https://github.com/ai2010/
machine_learning_for_the_web/tree/master/chapter_4/. As before, we import
the data and preprocess:

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_4/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_4/

Chapter 4

[145]

The data is then split into a training set (80%) and a test set (20%) in a way the nltk
library can process (a list of tuples each or those with a dictionary containing the
document words and the label):

Web Mining Techniques

[146]

Now we can train and test a NaiveBayesClassifier (multinomial) using the nltk
library and check the error:

The code returns an error of 28.25%, but it is possible to improve the result by
computing the best bigrams in each document. A bigram is defined as a pair of
consecutive words, and the X2 test is used to find bigrams that do not occur by chance
but with a larger frequency. These particular bigrams contain relevant information for
the text and are called collocations in natural language processing terminology. For
example, given a bigram of two words, w1 and w2, in our corpus with a total number
of N possible bigrams, under the null hypothesis that w1 and w2 occur independently
to each other, we can fill a two-dimensional matrix O by collecting the occurrences of
the bigram (w1, w2) and the rest of the possible bigrams, such as these:

w1 Not w1
w2 10 901
Not w2 345 1,111,111

Chapter 4

[147]

The X2 measure is then given by
()

1,1 2

0, 02
ij ij

i j

ij

O E

E
= =

−
Χ =

∑
, where Oij is the

number of occurrences of the bigram given by the words (i, j) (so that O00=10
and so on) and Eij is the expected frequency of the bigram (i, j) (for example,

() ()00 01 00 10
00

O O O O
E N

N N
+ +

= +

). Intuitively, X2 is higher the more the

observed frequency Oij differs from the expected mean Eij, so the null hypothesis is
likely to be rejected. The bigram is a good collocation and it contains more information
than a bigram that follows the expected means. It can be shown that the X2 can be
calculated as the f test (also called mean square contingency coefficient) multiplied
by the total number of bigram occurrences N, as follows:

()()()()
2 00 11 01 10

10 11 01 00 01 11 00 10

, O O O ON
O O O O O O O O

φ φ −
Χ = =

+ + + +

Web Mining Techniques

[148]

More information about the collocations and the X2 methods can be found in
Foundations of Statistical Natural Language Processing by C. D. Manning and H.
Schuetze (1999). Note also that the X2, as the information gain measure (not
discussed here), can be thought of as a feature selection method as defined in Chapter
3, Supervised Machine Learning. Using the nltk library, we can use the X2 measure
to select the 500 best bigrams per document and then train a Naive Bayes classifier
again, as follows:

This time the error rate is 20%, which is lower than in the normal method. The X2
test can also be used to extract the most informative words from the whole corpus.
We can measure how much the single word frequency differs from the frequency
of the positive (or negative) documents to score its importance (for example, if the
word great has a high X2 value on positive reviews but low on negative reviews, it
means that the word gives information that the review is positive). The 10,000 most
significant words of the corpus can be extracted by calculating for each of them, the
the overall frequency on the entire corpus and the frequencies over the positive and
negative subsets:

Chapter 4

[149]

Now we can simply train a Naive Bayes classifier again using only the words in the
bestwords set for each document:

Web Mining Techniques

[150]

The error rate is 12.75%, which is remarkably low considering the relatively small
dataset. Note that to have a more reliable result, a cross-validation method (see
Chapter 3, Supervised Machine Learning) should be applied, but this is given to the
reader as an exercise. Also note that the Doc2Vec vectors (compute in the Movie
review query example section) can be used to train a classifier. Assuming that the
Doc2Vec vectors have already been trained and stored in the model_d2v.doc2vec
object, as usual we split the data into a training dataset (80%) and a test set (20%):

Then we can train an SVM classifier (radial basis function kernel (RBF) kernel) or a
logistic regression model:

Chapter 4

[151]

Logistic regression and SVM give very low accuracies, of 0.5172 and 0.5225
respectively. This is mostly due to the small size of the training dataset, which does
not allow us to train algorithms that have a large number of parameters to train, such
as neuron networks.

Summary
In this chapter both the most common and advanced algorithms used to manage web
data were discussed and implemented using a series of Python libraries. Now you
should have a clear understanding of the challenges faced in the web mining area
and should be able to handle some of these issues with Python. In the next chapter,
we will discuss the most important recommendation systems algorithms used to
date in the commercial environment.

[153]

Recommendation Systems
Recommendation systems find their natural application whenever a user is exposed
to a wide choice of products or services that they cannot evaluate in a reasonable
timeframe. These engines are an important part of an e-commerce business because
they assist the clients on the web to facilitate the task of deciding the appropriate
items to buy or choose over a large number of candidates not relevant to the end
user. Typical examples are Amazon, Netflix, eBay, and Google Play stores that
suggest each user the items they may like to buy using the historical data they have
collected. Different techniques have been developed in the past 20 years and we
will focus on the most important (and employed) methods used in the industry to
date, specifying the advantages and disadvantages that characterize each of these
methods. The recommendation systems are classified in Content-based Filtering
(CBF) and Collaborative Filtering (CF) techniques and other different approaches
(association rules, the log-likelihood method, and hybrid methods) will be discussed
together with different ways to evaluate their accuracy. The methods will be tested
on the MovieLens database (from http://grouplens.org/datasets/movielens/)
consisting of 100,000 movie ratings (1 to 5 values) from 943 users on 1,682 movies.
Each user has at least 20 ratings and each movie has a list of genres that it belongs
to. All the codes shown in this chapter are available, as usual, at https://github.
com/ai2010/machine_learning_for_the_web/tree/master/chapter_5 in the
rec_sys_methods.ipynb file.

We will start by introducing the main matrix used to arrange the dataset employed
by the recommendation system and the metric measures typically used before
starting to discuss the algorithms in the following sections.

http://grouplens.org/datasets/movielens/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_5
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_5

Recommendation Systems

[154]

Utility matrix
The data used in a recommendation system is divided in two categories: the users
and the items. Each user likes certain items, and the rating value rij (from 1 to 5) is
the data associated with each user i and item j and represents how much the user
appreciates the item. These rating values are collected in matrix, called utility matrix
R, in which each row i represents the list of rated items for user i while each column j
lists all the users who have rated item j. In our case, the data folder ml-100k contains
a file called u.data (and also u.item with the list of movie titles) that has been
converted into a Pandas DataFrame (and saved into a csv, utilitymatrix.csv) by
the following script:

Chapter 5

[155]

The output of the first two lines is as follows:

Each column name, apart from the first (which is the user id), defines the name
of the movie and the ID of the movie in the MovieLens database (separated by a
semicolon). The 0 values represent the missing values and we expect to have a large
number of them because the users evaluated far fewer than 1,600 movies. Note that
the movies with less than 50 ratings have been removed from the utility matrix, so
the number of columns is 604 (603 movies rated more than 50 times). The goal of the
recommendation system is to predict these values, but for some techniques to work
properly it will be necessary for us to initially set these values (imputation). Usually,
two imputation approaches are used: ratings average per user or ratings average per
item, and both of them are implemented in the following function:

This function will be called by many of the algorithms implemented in this chapter,
so we decided to discuss it here as a reference for future use. Furthermore, in this
chapter the utility matrix R will have dimensions N×M with N number of users and
M number of items. Due to the recurrent use of the similarity measures by different
algorithms, we will define the most commonly used definitions hereafter.

Recommendation Systems

[156]

Similarities measures
In order to compute similarity s between two different vectors x and y, which can be
users (rows of utility matrix) or items (columns of utility matrix), two measures are
typically used:

• Cosine similarity: ()
2 2

,
i i

i

i i
i i

x y
s x y

x y
=

∑

∑ ∑

• Pearson correlation: ()
()()

() ()2 2
,

i i
i

i i
i i

x x y y
s x y

x x y y

− −
=

− −

∑

∑ ∑
, where x and y

are the averages of the two vectors.

Note that the two measures coincide if the average is 0. We can now start discussing
the different algorithms, starting from the CF category. The following sim() function
will be used to evaluate the similarity between two vectors:

The SciPy library has been used to compute both similarities (note that the cosine
scipy definition is the opposite of what has been defined previously, so the value is
subtracted from 1).

Chapter 5

[157]

Collaborative Filtering methods
This class of methods is based on the idea that any user will like items appreciated
by other users similar to them. In simple terms, the fundamental hypothesis is that
a user A, who is similar to user B, will likely rate an item as B did rather than in
another way. In practice, this concept is implemented by either comparing the taste
of different user's and inferring the future rating for a given user using the most
similar users taste (memory-based) or by extracting some rating patterns from what
the users like (model-based) and trying to predict the future rating following these
patterns. All these methods require a large amount of data to work because the
recommendations to a given user rely on how many similar users can be found in the
data. This problem is called cold start and it is very well studied in literature, which
usually suggests using some hybrid method between CF and CBF to overcome the
issue. In our MovieLens database example we assume we have enough data to avoid
the cold start problem. Other common problems of CF algorithms are the scalability,
because the computation grows with the number of users and products (it may
be necessary some parallelization technique), and the sparsity of the utility matrix
due to small number of items that any user usually rates (imputation is usually an
attempt to handle the problem).

Memory-based Collaborative Filtering
This subclass employs the utility matrix to calculate either the similarity between
users or items. The methods suffer from scalability and cold start issues, but when
they are applied to a large or too small utility matrix, they are currently used in
many commercial systems today. We are going to discuss user-based Collaborative
Filtering and iteFiased Collaborative Filtering hereafter.

User-based Collaborative Filtering
The approach uses a k-NN method (see Chapter 3, Supervised Machine Learning) to
find the users whose past ratings are similar to the ratings of the chosen user so that
their ratings can be combined in a weighted average to return the current user's
missing ratings.

The algorithm is as follows:

For any given user i and item not yet rated j:

1. Find the K that is most similar users that have rate j using a similarity
metric s.

Recommendation Systems

[158]

2. Calculate the predicted rating for each item j not yet rated by i as a weighted
average over the ratings of the users K:

()()

()
0

0

,

,

K

kj k
k

ij i K

k

s i k r r
p r

s i k

=

=

−
= +

∑

∑

Here ,i kr r are the average ratings for users i and k to compensate for subjective
judgment (some users are generous and some are picky) and s(i, k) is the similarity
metric, as seen in the previous paragraph. Note that we can even normalize by the
spread of the ratings per user to compare more homogeneous ratings:

()()

()
0

0

, /

,

K

i kj k k
k

ij i K

k

s i k r r
p r

s i k

σ σ
=

=

−
= +

∑

∑

Here, si and sk are the standard deviations of ratings of users i and k.

This algorithm has as an input parameter, the number of neighbors, K but usually a
value between 20 and 50 is sufficient in most applications. The Pearson correlation
has been found to return better results than cosine similarity, probably because the
subtraction of the user ratings means that the correlation formula makes the users
more comparable. The following code is used to predict the missing ratings of
each user.

Chapter 5

[159]

The u_vec represents the user ratings values from which the most similar other
users K are found by the function FindKNeighbours. CalcRating just computes
the predicted rating using the formula discussed earlier (without the spreading
correction). Note that in case the utility matrix is so sparse that no neighbors are
found, the mean rating of the user is predicted. It may happen that the predicted
rating is beyond 5 or below 1, so in such situations the predicted rating is set to
5 or 1 respectively.

Recommendation Systems

[160]

Item-based Collaborative Filtering
This approach is conceptually the same as user-based CF except that the similarity
is calculated on the items rather than the users. Since most of the time the number of
users can become much larger than the number of items, this method offers a more
scalable recommendation system because the items' similarities can be precomputed
and they will not change much when new users arrive (if the number of users N is
significantly large).

The algorithm for each user i and item j is as follows:

1. Find the K most similar items using a similarity metric s that i has
already rated.

2. Calculate the predicted rating as a weighted average of the ratings of
the K items:

()

()
0

0

K

ik
k

ij K

k

s jk r
p

s jk

=

=

=
∑

∑

Note that the similarity metric may have a negative value, so we need to restrict the
summation to only positive similarities in order to have meaningful (that is, positive)
Pij (the relative ordering of items will be correct anyway if we are only interested
in the best item to recommend instead of the ratings). Even in this case, a K value
between 20 and 50 is usually fine in most applications.

Chapter 5

[161]

The algorithm is implemented using a class, as follows:

The constructor of the class CF_itembased calculates the item similarity matrix
simmatrix to use any time we want to evaluate missing ratings for a user through
the function CalcRatings. The function GetKSimItemsperUser finds K: most
similar users to the chosen user (given by u_vec) and CalcRating just implements
the weighted average rating calculations discussed previously. Note that in case no
neighbors are found, the rating is set to the average or the item's ratings.

Recommendation Systems

[162]

Simplest item-based Collaborative Filtering – slope
one
Instead of computing the similarity using the metric discussed previously, a very
simple but effective method can be used. We can compute a matrix D in which each
entry dij is the average difference between the ratings of items i and j:

()
1

1

K
k

ki kj ij
k

ij N
k
ij

k

r r n
d

n

=

=

−
=
∑

∑

Here,
1 , 0

0 ()
ki kjk

ij

if r r
n

else missing data
>

=

 is a variable that counts if the user k has rated

both i and j items, so
1

N
k
ij

k
n

=
∑ is the number of users who have rated both i and j items.

Then the algorithm is as explained in the Item-based Collaborative Filtering section. For
each user i and item j:

1. Find the K items with the smallest differences from j,

1, , , ,j j j jKd d d d
K

∗ ∗ =… … (the * indicates the possible index values, but

for simplicity we relabel them from 1 to K).
2. Compute the predicted rating as a weighted average:

()
1 1

1 1

K N
l

jk ik jk
k l

ij K N
l
jk

k l

d r n
p

n

= =

= =

+
=
∑ ∑

∑∑

Chapter 5

[163]

Although this algorithm is much simpler than the other CF algorithms, it often
matches their accuracy, is computationally less expensive, and is easy to implement.
The implementation is very similar to the class used for item-based CF:

Recommendation Systems

[164]

The only difference is the matrix: now difmatrix is used to calculate the differences
d(i, j) between items i, j, as explained earlier, and the function GetKSimItemsperUser
now looks for the smallest difmatrix values to determine the K nearest neighbors.
Since it is possible (although unlikely) that two items have not been rated by at least
one user, difmatrix can have undefined values that are set to 1000 by default. Note
that it is also possible that the predicted rating is beyond 5 or below 1, so in such
situations the predicted rating must be set to 5 or 1 appropriately.

Model-based Collaborative Filtering
This class of methods uses the utility matrix to generate a model to extract the
pattern of how the users rate the items. The pattern model returns the predicted
ratings, filling or approximating the original matrix (matrix factorization).Various
models have been studied in the literature and we will discuss particular matrix
factorization algorithms—the Singular Value Decomposition (SVD, also with
expectation maximization), the Alternating Least Square (ALS), the Stochastic
Gradient Descent (SGD), and the general Non-negative matrix factorization (NMF)
class of algorithms.

Alternative least square (ALS)
This is the simplest method to factorize the matrix R. Each user and each item can be
represented in a feature space of dimension K so that:

ˆTR PQ R=�

Here, P N×K is the new matrix of users in the feature space, and Q M×K is the
projection of the items in the same space. So the problem is reduced to minimize
a regularized cost function J:

()
2

222

, , 1 2

K
T

ij ij ij ik kj i jp q p qij ij k
J min e min M r p q p qλ

=

 = = − + +

∑ ∑ ∑

Chapter 5

[165]

Here, λ is the regularization parameter, which is useful to avoid overfitting by
penalizing the learned parameters and ensuring that the magnitudes of the vectors
pi and q

T
j are not too large. The matrix entries Mcij are needed to check that the pair of

user i and item j are actually rated, so Mcij is 1 if rij>0, and it's 0 otherwise. Setting the
derivatives of J to 0 for each user vector pi and item vector qj, we obtain the following
two equations:

1

2
T T

i i i ip Q McQ I Q Mc Rλ −
 = +

1

2
T T

j j i jq P Mc P I P Mc Rλ −
 = +

Here Ri and Mci refer to the row i of the matrices R and Mc, and Rj and Mcj refer to
the column j of the matrices Mc and R. Alternating the fixing of the matrix P, Q, the
previous equations can be solved directly using a least square algorithm and the
following function implements the ALS algorithm in Python:

The matrix Mc is called mask, the variable l represents the regularization parameter
lambda and is set to 0.001 by default, and the least square problem has been
solved using the linalg.solve function of the Numpy library. This method usually
is less precise than both Stochastic Gradient Descent (SGD) and Singular Value
Decomposition (SVD) (see the following sections) but it is very easy to implement
and easy to parallelize (so it can be fast).

Recommendation Systems

[166]

Stochastic gradient descent (SGD)
This method also belongs to the matrix factorization subclass because it relies on the
approximation of the utility matrix R as:

ˆTR PQ R=�

Here, the matrices P (N×K) and Q (M×K) represent the users and the items in a
latent feature space of K dimensions. Each approximated rating îjr can be expressed
as follows:

1

ˆ
K

ij ik kj
k

r p q
=

=∑

The matrix R̂ is found, solving the minimization problem of the regularized squared
errors e2

ij as with the ALS method (cost function J as in Chapter 3, Supervised Machine
Learning):

()
2

222

, , 1 2

K
T

ij ij ik kj i jp q p qij ij k
min e min r p q p qλ

=

 = − + +

∑ ∑ ∑

This minimization problem is solved using the gradient descent (see Chapter 3,
Supervised Machine Learning):

()
2

2ij
ik ik ik ij kj ik

ik

e
p p p e q p

p
α α λ
∂

= + = + −
∂

()
2

2ij
kj kj kj ij ik kj

kj

e
p q q e q q

p
α α λ
∂

= + = + −
∂

Chapter 5

[167]

Here, α is the learning rate (see Chapter 3, Supervised Machine Learning) and

1

K

ij ij ik kj
k

e r p q
=

 = −

∑ . The technique finds R alternating between the two previous

equations (fixing qkj and solving Pik, and vice versa) until convergence. SGD is usually

easier to parallelize (so it can be faster) than SVD (see the following section) but is

less precise at finding good ratings. The implementation in Python of this method is

given by the following script:

This SGD function has default parameters that are learning rate α = 0.0001,
regularization parameter λ = l =0.001, maximum number of iterations 1000, and
convergence tolerance tol = 0.001. Note also that the items not rated (0 rating
values) are not considered in the computation, so an initial filling (imputation) is not
necessary when using this method.

Recommendation Systems

[168]

Non-negative matrix factorization (NMF)
This is a group of methods that finds the decomposition of the matrix R again as a
product of two matrices P (N×K) and Q (M×K) (where K is a dimension of the feature
space), but their elements are required to be non-negative. The general minimization
problem is as follows:

() () ()
2

222

, 0, 0 1

1 1
2 2

K
T T

ij ij ik kj i j i jp q p qij ij k
J min e min r p q a p q p qλ αλ

≥ ≥
=

 = = − + − + + +

∑ ∑ ∑

Here, α is a parameter that defines which regularization term to use (0 squared, 1
a lasso regularization, or a mixture of them) and λ is the regularization parameter.
Several techniques have been developed to solve this problem, such as projected
gradient, coordinate descent, and non-negativity constrained least squares. It is
beyond the scope of this book to discuss the details of these techniques, but we are
going to use the coordinate descent method implemented in sklearn NFM wrapped
in the following function:

Note that an imputation may be performed before the actual factorization takes
place and that the function fit_transform returns the P matrix while the QT matrix
is stored in the nmf.components_ object. The α value is assumed to be 0 (squared
regularization) and λ = l =0.01 by default. Since the utility matrix has positive values
(ratings), this class of methods is certainly a good fit to predict these values.

Chapter 5

[169]

Singular value decomposition (SVD)
We have already discussed this algorithm in Chapter 2, Unsupervised Machine
Learning, as a dimensionality reduction technique to approximate a matrix by
decomposition into matrices U, Σ, V (you should read the related section in Chapter 2,
Unsupervised Machine Learning, for further technical details). In this case, SVD is used
as a matrix factorization technique, but an imputation method is required to initially
estimate the missing data for each user; typically, the average of each utility matrix
row (or column) or a combination of both (instead of leaving the zero values) is used.
Apart from directly applying the SVD to the utility matrix, another algorithm that
exploits an expectation-maximization (see Chapter 2, Unsupervised Machine Learning)
can be used as follows, starting from the matrix R̂ R= :

1. m-step: Perform ()ˆ ˆR SVD R=

2. e-step: ˆ ˆ ()
ij ij

ij
ij

r if r is filled by theuser
r

r else missing data

=

This procedure is repeated until the sum of squared errors ()2ˆij ij
ij

r r−∑ is less than

a chosen tolerance. The code that implements this algorithm and the simple SVD

factorization is as follows:

Recommendation Systems

[170]

Note that the SVD is given by the sklearn library and both imputation average
methods (user ratings' average and item ratings' average) have been implemented,
although the function default is none, which means that the zero values are left as
initial values. For the expect-maximization SVD, the other default parameters are
the convergence tolerance (0.0001) and the maximum number of iterations (10,000).
This method (especially with expectation-maximization) is slower than the ALS,
but the accuracy is generally higher. Also note that the SVD method decomposes
the utility matrix subtracted by the user ratings' mean since this approach usually
performs better (the user ratings' mean is then added after the SVD matrix has
been computed).

We finish remarking that SVD factorization can also be used in memory-based CF to
compare users or items in the reduced space (matrix U or VT) and then the ratings are
taken from the original utility matrix (SVD with k-NN approach).

CBF methods
This class of method relies on the data that describes the items, which is then used
to extract the features of the users. In our MovieLens example, each movie j has a set
of G binary fields to indicate if it belongs to one of the following genres: unknown,
action, adventure, animation, children's, comedy, crime, documentary, drama,
fantasy, film noir, horror, musical, mystery, romance, sci-fi, thriller, war, or western.

Based on these features (genres), each movie is described by a binary vector mj with
G dimensions (number of movie genres) with entries equal to 1 for all the genres
contained in movie j, or 0 otherwise. Given the dataframe that stores the utility
matrix called dfout in the Utility matrix section mentioned earlier, these binary
vectors mj are collected from the MoviesLens database into a dataframe using the
following script:

The movies content matrix has been saved in the movies_content.csv file ready to
be used by the CBF methods.

Chapter 5

[171]

The goal of the content-based recommendation system is to generate the user's
profile with the same fields to indicate how much the user likes each genre. The
problem with this method is that the content description of the item is not always
available, so it is not always possible to employ this technique in the e-commerce
environment. The advantage is that the recommendations to a specific user are
independent of the other users' ratings, so it does not suffer from cold start problems
due to an insufficient number of users' ratings for particular items. Two approaches
are going to be discussed to find the best recommendation methodologies. The first
methodology simply generates the user's profile associated with the average ratings
of the movies seen by each user to each genre and the cosine similarity is used to
find the movies most similar to the user preferences. The second methodology is a
regularized linear regression model to generate the user's profile features from the
ratings and the movie features so that the ratings of the movies not yet seen by each
user can be predicted using these users' profiles.

Item features average method
The approach is really simple and we are going to explain it using the features
that describe the movies in the MovieLens example, as discussed previously.
The objective of the method is to generate the movie genres' preferences vector

()0 1, ,i i iGv v v −= … for each user i (length equal to G). This is done by calculating the
average rating ir and each genre entry g; igv is given by the sum of ratings of the
movies seen by user i (Mi) containing the genre g, minus the average ir and divided
by the number of movies containing genre g:

()
0

0

i

i

M

ik i kg
k

ig M

kg
k

r r I
v

I

=

=

−
=
∑

∑

Here, Ikg is 1 if the movie k contains genre g; otherwise it is 0.

Recommendation Systems

[172]

The vectors iv are then compared to the binary vectors mj using the cosine similarity
and the movies with the highest similarity values are recommended to the user i. The
implementation of the method is given by the following Python class:

The constructor stores the list of the movie titles in Movieslist and the movie
features in the Movies vector, and the GetRecMovies function generates the user
genres' preferences vector, that is, iv (applying the preceding formula) called
features_u, and returns the most similar items to this vector.

Chapter 5

[173]

Regularized linear regression method
The method learns the movie preferences of the users as parameters 0, , 1i Nθ ∈ −…
of a linear model, with 1

0: 1G
i iRθ θ+∈ = , where N is the number of users and G

is the number of features (movie genres) of each item. We add an intercept value
on the user parameters θi (θi0 = 1) and also the movie vector mj that has the same
value mj0=1, and so 1G

jm R +∈ . To learn the vectors of parameters qi , we solve the
following regularized minimization problem:

()
0, 1

1 1 1 12 2

.., 0 0 0 0

1min
2 2N

N M N G
T
i j ij ij ik

i j i k
m r I

θ θ

λθ θ
−

− − − −

= = = =

− +∑∑ ∑∑

Here, Iij is 1; that is, user i watched the movie, otherwise j is 0 and λ is the
regularization parameter (see Chapter 3, Supervised Machine Learning).

The solution is given by applying gradient descent (see Chapter 3, Supervised Machine
Learning). For each user i:

• ()
1

0 0 0
0

M
T

i i i j ij j ij
j

m r m Iθ θ α θ
−

=

= − −∑ (k=0)

• ()
1

0 0
0

M
T

ik ik i j ij j ij j ij ik
j

m r m I m Iθ θ α θ λθ
−

=

= − − +

∑ (k>0)

Since we are adding 1 entry to the movie and user vectors respectively, the
distinction between learning the intercept parameter (k=0) and the others is
necessary (there is no possibility of overfitting on the intercept, so no need to
regularize on it). After the parameters qi are learned, the recommendation is
performed by simply applying for any missing rating rij in the formula T

ij i jr mθ= .

Recommendation Systems

[174]

The method is implemented by the following code:

The constructor of the class CBF_regression just performs the gradient descent
to find the parameters θi (called Pmatrix) while the function CalcRatings finds
the most similar rating vector in the stored utility matrix R (in case the user is not
present in the utility matrix) and then it uses the corresponding parameters' vector
to predict the missing ratings.

Chapter 5

[175]

Association rules for learning
recommendation system
Although this method is not used often in many commercial recommendation
systems, association rules learning is certainly a method worth knowing about
because of historical data reasons, and it can be employed to solve a wide range
of problems in real-world examples. The main concept of this method is to find
relationships among items based on some statistical measure of the occurrences of
the items in the database of transactions T (for example, a transaction could be the
movies seen by a user i or the products bought by i). More formally, a rule could be
{item1,item2} => {item3}, that is, a set of items ({item1,item2}) implies the presence of
another set ({item3}). Two definitions are used to characterize each X=>Y rule:

• Support: Given a set of items X, the support supp(X) is the portion of
transactions that contains the set X over the total transactions.

• Confidence: It is the fraction of transactions that contains the set X that also
contains the set Y: conf(X=>Y)=supp(X U Y)/supp(X). Note that the confidence
conf(X=>Y) can have a very different value than conf(Y=>X).

Support represents the frequency of a certain rule on the transaction database, while
the confidence indicates the probability that set Y will occur if set X is present. In
other words, the support value is chosen to filter the number of rules we want to
mine from the database (the higher the support, the fewer rules will satisfy the
condition), while the confidence can be thought of as a similarity metric between
sets X and Y. In the case of the movie recommendation system, the transaction
database can be generated from the utility matrix R considering the movies each
user likes, and we look for rules composed by sets X and Y that contain only one
item (movie). These rules are collected in a matrix, ass_matrix, in which each entry
ass_matrixij represents the confidence of the rule i =>j. The recommendations for
the given user are obtained by simply multiplying the ass_matrix by his ratings
u_vec: recitems u vec ass matrix= ⋅ , and sorting all the values recitems by the
largest value corresponding to the most recommended movie to the least. Therefore,
this method does not predict the ratings, but the list of movie recommendations;
however, it is fast and it also works well with a sparse utility matrix. Note that to
find all the possible combinations of items to form sets X and Y as fast as possible,
two algorithms have been developed in the literature: apriori and fp-growth (not
discussed here since we only require rules with one item per set X and Y).

Recommendation Systems

[176]

The class that implements the method is as follows:

Chapter 5

[177]

The class constructor takes as input parameters the utility matrix Umatrix, the
movie titles list Movieslist, the support min_support, confidence min_confidence
thresholds (default 0.1), and the likethreshold, which is the minimum rating
value to consider a movie in a transaction (default 3). The function combine_lists
finds all the possible rules, while filterSet just reduces the rules to the subset that
satisfies the minimum support threshold. calc_confidence_matrix fills the ass_
matrix with the confidence value that satisfies the minimum threshold (otherwise 0
is set by default) and GetRecItems returns the list of recommended movies given the
user ratings u_vec.

Log-likelihood ratios recommendation
system method
The log-likelihood ratio (LLR) is a measure of how two events A and B are unlikely
to be independent but occur together more than by chance (more than the single
event frequency). In other words, the LLR indicates where a significant co-occurrence
might exist between two events A and B with a frequency higher than a normal
distribution (over the two events variables) would predict.

It has been shown by Ted Dunning (http://tdunning.blogspot.it/2008/03/
surprise-and-coincidence.html) that the LLR can be expressed based on
binomial distributions for events A and B using a matrix k with the following entries:

A Not A
B k11 k12
Not B k21 k22

() () ()()11, 12, 21, 22, 11, 12, 21, 22, 11, 12, 21, 22,2LLR N H k k k k H k k k k k k k k = − −

Here, 11 12 21 22N k k k k= + + + and () ()
()

0
/ log /

len p

i i
i

H p p N p N
=

= ∑ is the Shannon

entropy that measures the information contained in the vector p.

Note: () []() []()11, 12, 21, 22 11 12 21 22 11 21 12 22H k k k k H k k k k H k k k k − + + + − + + + is also

called the Mutual Information (MI) of the two event variables A and B, measuring
how the occurrence of the two events depend on each other.

http://tdunning.blogspot.it/2008/03/surprise-and-coincidence.html
http://tdunning.blogspot.it/2008/03/surprise-and-coincidence.html

Recommendation Systems

[178]

This test is also called G2, and it has been proven effective to detect co-occurrence
of rare events (especially in text analysis), so it's useful with sparse databases (or a
utility matrix, in our case).

In our case, the events A and B are the like or dislike of two movies A and B by a
user, where the event of like a movie is defined when the rating is greater than 3 (and
vice versa for dislike). Therefore, the implementation of the algorithm is given by the
following class:

Chapter 5

[179]

The constructor takes as input the utility matrix, the movie titles list, and the
likethreshold that is used to define if a user likes a movie or not (default 3). The
function loglikelihood_ratio generates the matrix with all the LLR values for
each pair of movies i and j calculating the matrix k (calc_k) and the corresponding
LLR (calc_llr). The function GetRecItems returns the recommended movie list for
the user with ratings given by u_vec (the method does not predict the rating values).

Hybrid recommendation systems
This is a class of methods that combine both CBF and CF in a single recommender to
achieve better results. Several approaches have been tried and can be summarized in
the following categories:

• Weighted: The CBF and CF predicted ratings are combined in to some
weighted mean.

• Mixed: CF and CBF predicted movies are found separately and then merged
in to a single list.

• Switched: Based on certain criteria, the CF predictions or CBF predictions
are used.

• Feature combination: CF and CBF features are considered together to find
the most similar users or items.

• Feature augmentation: Similar to feature combination, but the additional
features are used to predict some ratings and then the main recommender
uses these ratings to produce the recommendation list. For example,
Content-Boosted Collaborative Filtering learns the ratings of unrated movies
by a content-based model and then a collaborative approach is employed to
define the recommendations.

Recommendation Systems

[180]

As an example, we implement two hybrid feature combination methods merging an
item's features CBF method with a user-based CF method. The first method employs
a user-based CF to the expanded utility matrix that now also contains the average
rating per genre per user. The Python class is as follows:

Chapter 5

[181]

Recommendation Systems

[182]

The constructor generates the expanded utility matrix with the movies' genres
average rating features associated to each user, Umatrix_mfeats. The function
CalcRatings finds the K-NN using the Pearson correlation comparing the expanded
feature vectors of the users. The second method applies and SVD factorization to the
expanded utility matrix that contains the genre preferences for each user.

As the SVD method, the ratings are subtracted with the user rating's average, and
genre preferences are subtracted from the same user rating's average.

Chapter 5

[183]

Evaluation of the recommendation
systems
We have discussed all of the most relevant methods used in the commercial
environment to date. The evaluation of a recommendation system can be executed
offline (using only the data in the utility matrix) or online (using the utility matrix
data and the new data provided in real time by each user using the website). The
online evaluation procedures are discussed in Chapter 7, Movie Recommendation
System Web Application, together with a proper online movie recommendation
system website. In this section, we will evaluate the performances of the methods
using two offline tests often used to evaluate recommendation systems: root mean
square error on ratings and ranking accuracy. For all the evaluations in which k-fold
cross-validation (see Chapter 3, Supervised Machine Learning) is applicable, a 5-fold
cross-validation has been performed to obtain more objective results. The utility
matrix has been divided in to 5 folds using the following function:

Here df is a data frame object that stores the utility matrix and k is the number of
folds. In the validation set, for each user ratings' vector u_vec, half of the ratings
have been hidden so that the real value can be predicted.

Recommendation Systems

[184]

u_vals stores the values to predict while u_test contains the ratings for testing the
algorithms. Before we start to compare the different algorithms with the different
measures, we load the utility matrix and the movie content matrix into data frames
and split the data into 5 folds for cross-validation.

df_vals contains the validation sets so the HideRandomRatings function presented
in this section needs to be applied.

The data available in the movies matrix, the movieslist list, and the data frames
df_trains, vals_vecs_folds, tests_vecs_folds are now ready to be used for
training and validating all the methods discussed in the previous sections. We can
start evaluating the root mean square error (RMSE).

Chapter 5

[185]

Root mean square error (RMSE) evaluation
This validation technique is applicable only on CF methods and linear regression
CBF since the predicted ratings are generated only by these algorithms. Given each
rating rij in u_vals in the validation sets, the predicted rating îjr is calculated using
each method and the root mean square error is obtained:

RMSE =
()2

, _

ˆij ij
i j u vals

val

r r

N
∈

−∑

Here, Nval is the number of ratings in the u_vals vectors. The presence of the square
factor in this formula highly penalizes the large errors, so the methods with low
RMSE (best values) are characterized by small errors spread over all the predicted
ratings instead of large errors on few ratings, like the mean absolute error MAE=

, _

ˆij ij
i j u vals

val

r r

N
∈

−∑
 would prefer.

Recommendation Systems

[186]

The code to calculate the RMSE for the memory-based CF user-based and item-based
methods is as follows:

For each method, the SE function is called to compute the error for each fold and
then the total RMSE of the folds is obtained.

Chapter 5

[187]

Using 5 nearest-neighbors for item-based CF with slope one and 20 for user-based
CF, the methods have the following errors:

Method RMSE Number of Predicted Ratings
CF user-based 1.01 39,972
CF item-based 1.03 39,972
Slope one 1.08 39,972
CF-CBF user-based 1.01 39,972

All have similar RMSE values but the best method is item-based Collaborative
Filtering.

For the model-based methods, instead of not hidden validation ratings, u_test are
included in the utility matrix for training and then the RMSE is calculated using the
following script:

Recommendation Systems

[188]

The code calculates the RMSE only for CBF regression and SVD, and the reader can
easily replicate the code to calculate the error for the other algorithms since most
of the required code is just commented (SVD expect-maximization, SGD, ALS, and
NMF). The results are shown in the following table (K dimension feature space):

Method RMSE Number Predicted Ratings
CBF linear regression
(a= 0.01, l =0.0001, its=50)

1.09 39,972

SGD (K=20, 50 its, a =0.00001, l=0.001) 1.35 39,972
ALS (K=20, 50 its, l =0.001) 2.58 39,972
SVD (imputation=useraverage, K=20) 1.02 39,972
SVD EM (imputation=itemaverage,
iterations=30,K=20)

1.03 39,972

HYBRID SVD (imputation=useraverage,
K=20)

1.01 39,972

NMF (K=20 imputation=useraverage) 0.97 39,972

As expected, the ALS and SGD are the worst methods but they are discussed because
they are instructive from a didactic point of view (they are also slow because the
implementation is not as optimized as the methods from sklearn library).

All the others have similar results. However, just note that the hybrid methods have
slightly better results than the corresponding SVD and CF user-based algorithms.
Note that the movies to predict are chosen randomly so the results may vary.

Classification metrics
The rating error RMSE does not really indicate the quality of a method but is an
academic measure that is not really used in a commercial environment. The goal of a
website is to present content that is relevant to the user regardless of the exact rating
the user gives. In order to evaluate the relevance of the recommended items, the
precision, recall, and f1 (see Chapter 2, Unsupervised Machine Learning) measures
are used where the correct predictions are the items with ratings greater than 3.
These measures are calculated on the first 50 items returned by each algorithm (if
the algorithm return a recommended list or the 50 items with the highest predicted
ratings for the other methods). The function that calculates the measures is as follows:

Chapter 5

[189]

Here, Boolean ratingsval indicates if the method returns ratings or recommended
list. We use the function ClassificationMetrics in the same way we compute the
RMSE for all the methods, so the actual code to evaluate the measures is not shown
(you can write it as an exercise). The following table summarizes the results for all
the methods (neighs is number of nearest-neighbors, K dimension feature space):

Method Precision Recall f1 Number of Predicted
Ratings

CF user-based (neighs=20) 0.6 0.18 0.26 39,786
CBFCF user-based (neighs=20) 0.6 0.18 0.26 39,786
HYBRID SVD (K=20,
imputation=useraverage)

0.54 0.12 0.18 39,786

CF item-based (neighs=5) 0.57 0.15 0.22 39,786
Slope one (neighs=5) 0.57 0.17 0.24 39,786
SVD EM (K=20, iterations=30,
imputation=useraverage)

0.58 0.16 0.24 39,786

SVD (K=20,
imputation=itemaverage)

0.53 0.12 0.18 39,786

CBF regression (a = 0.01, l
=0.0001, iterations=50)

0.54 0.13 0.2 39,786

SGD (K=20, a =0.00001, l =0.001) 0.52 0.12 0.18 39,786
ALS (K=20, λ =0.001,
iterations=50)

0.57 0.15 0.23 39,786

CBF average 0.56 0.12 0.19 39,786

Recommendation Systems

[190]

Method Precision Recall f1 Number of Predicted
Ratings

LLR 0.63 0.3 0.39 39,786
NMF (K=20, λ =0.001,
imputation=ssss)

0.53 0.13 0.19 39,786

Association rules 0.68 0.31 0.4 39,786

From the results you can see that the best method is association rules, and there
is good precision also for the LLR, hybrid CBFCF user-based, and CF user-based
methods. Note that the results may vary since the movies to predict have been
randomly chosen.

Summary
In this chapter, we discussed the most commonly used recommendation system
methods from Collaborative Filtering and content-based filtering to two simple
hybrid algorithms. Note also that in the literature are present modal recommendation
systems in which different data (user gender, demographics, views, locations,
devices, and so on) are incorporated in to the same algorithm. These methods are
more advanced and more different data is needed to use them.

In Chapter 7, Movie Recommendation System Web Application, we will implement a web
recommendation system using the methods discussed in this chapter, but before that
we will present the Django framework to build web applications in Chapter 6, Getting
Started with Django.

[191]

Getting Started with Django
Django is an open source web framework employed in commercial environments
because it is easy to use, stable, and flexible (it takes advantage of the multiple
libraries available in Python).

In this chapter, we will focus on the features that we think are crucial for managing
and analyzing data in the framework. We also explain the main parts relevant
to building an essential web application, but further details and information can
be found online at https://docs.djangoproject.com or other sources. We
will introduce the main parts of the framework with the basic concepts of a web
server application (settings, models, and commands), the basics of HTML and
the shell interface, and the general ideas of a REST framework interface and how
it is implemented in Django (serializers, REST calls, and swagger). After a brief
introduction of the HTTP GET and POST method for transferring data over the
Internet, we start installing and creating a new server in Django.

HTTP – the basics of the GET and POST
methods
Hypertext Transfer Protocol (HTTP) allows a client (for example, the web browser)
to interact with a server (our application). Given a URL of a server web page, the
GET method is the way the client queries data from the server, specifying some
parameters. This can be explained using the curl command, as follows:

curl -X GET url_path?name1=value1&name2=value2

After the ? symbol, the name/value pair specifies which data to query, and they are
separated by a & symbol.

https://docs.djangoproject.com/

Getting Started with Django

[192]

The way a client transfers data to the server is called POST, and the data is in the
body of the call:

curl -X POST -d @datafile.txt url_path

Now we can start discussing how to create a new server and an application
using Django.

Installation and server creation
The Django library is installed by typing the following command in the Terminal:

sudo pip instal django

The command should install Django Version 1.7 or above (the author used
version 1.7). In order to start a new app, we type the following command:

django-admin startproject test_server

It will generate a new folder test_app with the following tree of files:

└── test_server

 ├── manage.py

 └── test_server

 ├── __init__.py

 ├── settings.py

 ├── urls.py

 └── wsgi.py

We can see that, inside the folder, we have the manage.py file, which allows the
programmer to run various actions, and another subfolder, test_app, with the
following files:

• settings.py: This stores all the parameters' settings to configure the server
• urls.py: This collects all the URL paths available on your web application,

and the actual functions behind the web pages are usually written in the
views.py app file

• wsgi.py: This is a module to make a server communicate with a web
application

• __init__.py: This file is used to define every folder as a package, to import
modules internally

Chapter 6

[193]

On our local machine, the server with a Welcome to Django page is deployed on
http://127.0.0.1:8080/ simply by typing the following command:

python manage.py runserver 8080

Here, 8080 is the port on which the server is started (if no port is specified, by default
the server is started on port 8000). Now that the server is ready, we can create as
many applications as we want by simply typing the following command:

python manage.py startapp nameapp

This will create a new folder, nameapp, inside the test_app folder at root:

├── manage.py

├── nameapp

│ ├── __init__.py

│ ├── admin.py

│ ├── migrations

│ ├── __init__.py

│ ├── models.py

│ ├── tests.py

│ └── views.py

└── test_server

 ├── __init__.py

 ├── settings.py

 ├── urls.py

 └── wsgi.py

We will discuss the contents of this folder and its functions after we explain the
most important settings parameters. Note that for Django Version 1.9, the nameapp
folder contains the apps.py file in order to configure nameapp without using the
settings.py file.

Settings
The settings.py file stores all the configurations needed for the Django server to
operate. The most important parameters to set are as follows:

• Apart from the common Django apps installed by default to manage a
website, we will also install the REST framework:
INSTALLED_APPS = (
...

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Getting Started with Django

[194]

'rest_framework',
'rest_framework_swagger',
'nameapp',
)

The REST framework is an application that allows the Django app (nameapp
in this case) to communicate through a REST API, and the REST Framework
Swagger is just a web interactive interface to manage the REST APIs. These
functionalities will be explained in the following sections. Also, note that
each app created needs to be added in this field (in this case, nameapp).

• Different backend databases (MySQL, Oracle, PostgreSQL, and so on) can
be used to store the data. In this case, we use SQLite3 (the default option):
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'mydatabase',
 }
 }

The web pages are written in HTML, so a folder to store the HTML code is
required. The templates folder is usually used to store the web pages layout:
TEMPLATE_DIRS = (
 os.path.join(BASE_DIR, 'templates'),
)

• To embellish a website, the CSS formatting and JavaScript code are usually
stored in another folder, static, at the same level as the server folder. Then
the settings need to be configured to take the files from the folder:
MEDIA_ROOT = os.path.join(BASE_DIR, 'static')
STATIC_URL = '/static/'
MEDIA_URL = ''
STATIC_ROOT = ''
STATICFILES_DIRS = (os.path.join(BASE_DIR, "static"),)

• To set the URL of the website, the settings are configured to take the path
from the file (in this case, test_server/urls.py):
ROOT_URLCONF = 'test_server.urls'

• It is possible to set up a file to store all the printout statements we want to
put in the code for debugging purposes. We use the logging library and the
following configuration:
LOGGING = {
 'version': 1,

Chapter 6

[195]

 'disable_existing_loggers': True,
 'formatters': {
 'standard': {
 'format': '%(asctime)s %(levelname)s %(name)s
%(message)s'
 },
 },
 'handlers': {
 'default': {
 'level':'DEBUG',
 'class':'logging.handlers.RotatingFileHandler',
 'filename': 'test_server.log',
 'maxBytes': 1024*1024*5, # 5 MB
 'backupCount': 5,
 'formatter':'standard',
 },
 },
'loggers': {
 '': {
 'handlers': ['default'],
 'level': 'DEBUG',
 'propagate': True
 },
 }
}

Here, the test_server.log file stores all the print statements defined using
the logging library (for example, logging.debug('write something')).

Now that all the most important settings are configured, we can focus on developing
a new app that creates a simple email address book. So we create the app as usual:

python manage.py startapp addresesapp

Now, we add the templates and static folder on the root test_server directory of
the server:

├── addresesapp

│ ├── __init__.py

│ ├── admin.py

│ ├── migrations

│ ├── models.py

│ ├── tests.py

│ └── views.py

├── manage.py

└── test_server

Getting Started with Django

[196]

 ├── __init__.py

 ├── __init__.pyc

 ├── settings.py

 ├── settings.pyc

 ├── static

 ├── templates

 ├── urls.py

 └── wsgi.py

Note that the nameapp on the INSTALLED_APPS becomes addressesapp. In the
following section, we will discuss the main features of how to implement the app.
All the code can be found in the chapter_6 folder of the author's GitHub repository
(https://github.com/ai2010/machine_learning_for_the_web/tree/master/
chapter_6).

Writing an app – most important features
To create a web application that stores e-mail addresses, we will need a table that
stores the data and web pages that allow the end user to add, delete, and review
the address book. Furthermore, we may want to transform the address book to
read as a spreadsheet, or send the data to another app through the Internet. There
are specific Django features to accomplish all these actions (models, views, admin,
API REST-framework, and commands) and we will now discuss the way the data
is stored.

Models
To create an e-mail address book, we need to store, in a table, the name of each
contact with their e-mail address. A table in Django is called a model and it is
defined in the models.py file:

from django.db import models

from django.utils.translation import ugettext_lazy as _

class Person(models.Model):

 name = models.CharField(_('Name'), max_length=255, unique=True)

 mail = models.EmailField(max_length=255, blank=True)

 #display name on admin panel

 def __unicode__(self):

 return self.name

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_5
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_5

Chapter 6

[197]

In Django, the columns of a table are the fields of the model, and can be of
different types: integer, char, and so on. Note that Django automatically adds an
incremental ID field to any new object. The unique option means that duplicate
names cannot exist in the model, and blank states whether the field can be empty or
not. The __unicode__ function is optional, and it is used to render each person as a
string (we set the name string in this case).

Now that the model has been created, we need to apply it to the SQLite database:

python manage.py makemigrations

python manage.py migrate

makemigrations will transform the model changes to migration files (for
folder migrations inside addressesapp), while migrate applies the change
to the database schema. Note that in case multiple applications are used by the
same website, then the command to generate migrations is python manage.py
makemigrations 'appname'.

URL and views behind HTML web pages
Now that we know how to store data, we need to record contacts through a web
page and show the contacts in another page. In the following section, the pages are
described giving a brief overview of the main properties of HTML pages.

HTML pages
All the code explained in this section is stored in the folder template under the
test_server folder.

The main page of the application allows the user to record a new contact, and it looks
like the following screenshot:

Getting Started with Django

[198]

As you can see, the body of the page is specified by two boxes to be filled in with the
person's name and their e-mail address, pressing Add to add them to the database.
The HTML file, home.html, is as follows:

{% extends "addressesapp/base.html" %}

{% block content %}
 <form action="" method="POST">
 {% csrf_token %}
 <h2 align = Center>Add person to address book </h2>
 <p>

</p>
 <p align = Center><input type="search" class="span3"
 placeholder="person" name="name" id="search"
 autofocus /> </p>
 <p align = Center><input type="search" class="span3"
 placeholder="email" name="email" id="search"
 autofocus /> </p>
 <p align = Center><button type="submit" class="btn
 btn-primary btn-large pull-center">Add
 »</button></p>
 </form>
{% endblock content %}

We used the POST form to submit the data collected by the two paragraph fields
(specified by <p>...</p>) and activated by the Add button tag (»: is to
render the small arrows after the text). The title of the page, Add person to address
book, is rendered by a header of type 2 (<h2>...</h2>). Note the csrt_token tag,
which enables the cross-site forgery protection request (see more at https://www.
squarefree.com/securitytips/web-developers.html#CSRF).

The style of the page (CSS and JavaScript files), as well as the page footer and the
header bar with the Home, Emails Book, and Find buttons, are defined in the base.
html file (see the template folder). The Find button is implemented as a form:

<form class="navbar-search pull-left" action="{% url 'get_contacts'
%}" method="GET">
 {% csrf_token %}
 <div style="overflow: hidden; padding-right: .5em;">
 <input type="text" name="term" style="width: 70%;" />
 <input type="submit" name="search" value="Find"
 size="30" style="float: right" />
 </div>
 </form>

https://www.squarefree.com/securitytips/web-developers.html#CSRF
https://www.squarefree.com/securitytips/web-developers.html#CSRF

Chapter 6

[199]

The div tag has been used to define the text field and the Find button, which
activates a GET call to the URL defined as get_contacts in the urls.py file
(see the following section).

The other page to display is the address book:

{% extends "addressesapp/base.html" %}

{% block content %}
<h2 align = Center>Email address book</h2>
<P align=Center>[
{% for letter in alphabet %}
which is given by the book.html file:
{% extends "addressesapp/base.html" %}

{% block content %}
<h2 align = Center>Email address book</h2>
<P align=Center>[
{% for letter in alphabet %}
 {{letter}} </
a>
{% endfor %}
| Index] </P>
<section id="gridSystem">
{% for contact in contacts %}
<div class="row show-grid">
 <p align = Center> name: {{ contact.name }}
email: {{ contact.mail }}
 <a class="right" href="{% url 'delete_person' contact.name
%}" > delete

Getting Started with Django

[200]

 </p>
</div>
{% endfor %}
</section>

{% endblock content %}

Again, base.html is called to render the main header buttons, the footer, and the
style. After a header (of type 2) containing Email address book, a for loop on the
alphabet letters, {% for letter in alphabet %}, is performed to show only
the contacts starting with the corresponding letter. This is achieved by calling the
addressesbook URL with the letter to query {{letter}}. The list of contacts shown
is then rendered, looping over the contacts list {% for contact in contacts %}:
a paragraph tag displays the name, email, and a button to use to delete the person
from the database. We will now discuss the implementation of the page actions (add,
find, or delete person, and show address book).

URL declarations and views
We will now discuss the way urls.py and views.py work together with the HTML
code of each page to perform the desired actions.

As we have seen, the two main pages of the application, home and address book, are
associated with a URL, which in Django is declared in the urls.py file:

from django.conf.urls import patterns, include, url

from django.contrib import admin

from addressesapp.api import AddressesList

urlpatterns = patterns('',

 url(r'^docs/', include('rest_framework_swagger.urls')),

 url(r'^$','addressesapp.views.main'),

 url(r'^book/','addressesapp.views.addressesbook',name='addressesbo
ok'),

 url(r'^delete/(?P<name>.*)/','addressesapp.views.delete_person',
name='delete_person'),

 url(r'^book-search/','addressesapp.views.get_contacts', name='get_
contacts'),

 url(r'^addresses-list/', AddressesList.as_view(), name='addresses-
list'),

 url(r'^notfound/','addressesapp.views.notfound',name='notfound'),
 url(r'^admin/', include(admin.site.urls)),
)

Chapter 6

[201]

Each URL is specified by a regex (an r in front of the URL string), so the main page
is specified by http://127.0.0.1:8000/ (the ^ start symbol is followed by the $
end symbol) and its action (add record) is implemented in the main function of the
views.py file:

def main(request):

 context={}

 if request.method == 'POST':

 post_data = request.POST

 data = {}

 data['name'] = post_data.get('name', None)

 data['email'] = post_data.get('email', None)

 if data:

 return redirect('%s?%s' % (reverse('addressesapp.views.
main'),

 urllib.urlencode({'q': data})))

 elif request.method == 'GET':

 get_data = request.GET

 data= get_data.get('q',None)

 if not data:

 return render_to_response(

 'addressesapp/home.html', RequestContext(request,
context))

 data = literal_eval(get_data.get('q',None))

 print data

 if not data['name'] and not data['email']:

 return render_to_response(

 'addressesapp/home.html', RequestContext(request,
context))

 #add person to emails address book or update

 if Person.objects.filter(name=data['name']).exists():

 p = Person.objects.get(name=data['name'])

 p.mail=data['email']

 p.save()

 else:

 p = Person()

 p.name=data['name']

Getting Started with Django

[202]

 p.mail=data['email']

 p.save()

 #restart page

 return render_to_response(

 'addressesapp/home.html', RequestContext(request,
 context))

Whenever the user posts a new contact to be store, the POST method redirects the
call to a GET method. If the name and the email have been provided, a new object
of the Person model will be added, or updated if it already exists. In this method,
the same name but in capital letters will be considered a distinct name, so Andrea,
ANDREA, and andrea will be three separate contacts. To change this, the reader
can simply apply the lower function over the name field, so that the three andrea
expressions will all refer to one andrea.

The find action in the base.html file is associated with the
http://127.0.0.1:8000/book-search/ URL, and the action is defined in the get_
contacts function in views.py:

def get_contacts(request):

 logging.debug('here')

 if request.method == 'GET':

 get_data = request.GET

 data= get_data.get('term','')

 if data == '':

 return render_to_response(

 'addressesapp/nopersonfound.html',
 RequestContext(request, {}))

 else:

 return redirect('%s?%s' %
 (reverse('addressesapp.views.addressesbook'),

 urllib.urlencode({'letter': data})))

If the user specifies a non-empty string on the text header field, the function will
redirect to the addressesbook function with the name to search (otherwise a not
found page is displayed).

Chapter 6

[203]

The header button Emails book is linked to the http://127.0.0.1:8000/book/
URL, which shows the contacts according to the addressesbook function:

def addressesbook(request):

 context = {}

 logging.debug('address book')

 get_data = request.GET

 letter = get_data.get('letter',None)

 if letter:

 contacts = Person.objects.filter(name__iregex=r"(^|\s)%s" %
letter)

 else:

 contacts = Person.objects.all()

 #sorted alphabetically

 contacts = sort_lower(contacts,"name")#contacts.order_by("name")

 context['contacts']=contacts

 alphabetstring='ABCDEFGHIJKLMNOPQRSTUVWXYZ'

 context['alphabet']=[l for l in alphabetstring]

 return render_to_response(

 'addressesapp/book.html', RequestContext(request, context))

def sort_lower(lst, key_name):

 return sorted(lst, key=lambda item: getattr(item,
key_name).lower())

The letter field stores the name (in case of redirection from the Find header button)
or the letter (in case of calling from the emails book page), and a lookup over the
contacts in the Person model is performed. The retrieved contacts are then stored
in the contacts context object, while the letters are stored in the alphabet context
object. If no letter is specified, all the contacts in the database are returned. Note that
the name can have both a capital and a lowercase first letter, so the usual order_by
method will not sort the names in alphabetical order. Therefore, the function sort_
lower will convert each name to lowercase and sort the contacts alphabetically.

http://127.0.0.1:8000/book/
http://127.0.0.1:8000/book/

Getting Started with Django

[204]

The delete action is performed by the delete_person function and called by the
http://127.0.0.1:8000/delete/(?P<name>.*)/ URL. The .* indicates that all
the characters are valid for forming a name (note that if we wanted only character
numbers and whitespace, we should have [a-zA-Z0-9]+):

def delete_person(request,name):

 if Person.objects.filter(name=name).exists():

 p = Person.objects.get(name=name)

 p.delete()

 context = {}

 contacts = Person.objects.all()

 #sorted alphabetically

 contacts = sort_lower(contacts,"name")#contacts.order_by("name")

 context['contacts']=contacts

 return render_to_response(
 'addressesapp/book.html', RequestContext(request, context))

The name query variable is searched on the Person table in the database and deleted.
The function returns the emails book page with the remaining contacts.

In the same way, the not found URL activates the not found function, and you
should now be able to understand how it works.

The admin URL refers to the Django interface (see following section) while the docs
is the REST framework swagger discussed in the RESTful application programming
interfaces (APIs) section of this book.

Admin
The admin panel is a user interface for managing the application, accessible through
the browser. In the admin.py file, we can add the model just created with the
following command:

from models import Person

admin.site.register(Person)

All the models can be accessed by a user interface at:

http://127.0.0.1:8000/admin/

http://127.0.0.1:8000/delete/(?P
http://127.0.0.1:8000/admin/

Chapter 6

[205]

At this link, the user name and password are required. We create that with the
following command:

python manage.py createsuperuser

Then we type a username and password (in my case, andrea/a).

Now, we can explore the panel that follows:

Clicking on Persons, we will see all Person objects shown by name (because
the__unicode__ function in the model refers to the name field):

Getting Started with Django

[206]

Shell interface
The Django framework also provides a shell to explore the created models and test
them. To start it, we type the following in the terminal:

python manage.py shell

Now we can import the Person model and play with it:

In [1]: from addressesapp.models import Person

In [2]: newcontact = Person()

In [3]: newcontact.name = 'myfriend1'

In [4]: newcontact.mail = 'bla@.com'

In [5]: newcontact.save()

In [6]: Person.objects.all()

Out[6]: [<Person: ss>, <Person: Andrea Isoni>, <Person: www 1>,
<Person: addd-ww>, <Person: myfriend1>]

In these lines, we have created a new contact, myfriend1, and verified it has been
added to the list of Person objects.

Commands
The Django framework also allows us to write custom commands through the
manage.py module. For example, we would like to export the entire list of contacts
into a CSV file. To achieve that, we create a commands folder inside a management
folder (with __init__.py in each folder). The file implements the custom command
to export the contacts list to CSV, extending the BaseCommand class:

from addressesapp.models import Person

from django.core.management.base import BaseCommand, CommandError

from optparse import make_option

import csv

class Command(BaseCommand):

 option_list = BaseCommand.option_list + (

 make_option('--output',

 dest='output', type='string',

 action='store',

Chapter 6

[207]

 help='output file'),

)

 def person_data(self, person):

 return [person.name,person.mail]

 def handle(self, *args, **options):

 outputfile = options['output']

 contacts = Person.objects.all()

 header = ['Name','email']

 f = open(outputfile,'wb')

 writer = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC)

 writer.writerow(header)

 for person in contacts:

 writer.writerow(self.person_data(person))

The command must define a handler function, which will perform the export
operation. Type the following from the test_server folder:

python manage.py contacts_tocsv –output='contacts_list.csv'

RESTful application programming interfaces
(APIs)
A RESTful API is an application programming interface that employs HTTP requests
(such as GET and POST) to manage the data of an application. In this case, the API
is used to obtain the address book through a curl call. In order to do that, we have
defined the rest_framework app in the INSTALLED_APPS section of settings.py,
and then the api.py file implements the API:

from rest_framework import viewsets, generics, views

from rest_framework.response import Response

from rest_framework.permissions import AllowAny

from rest_framework.pagination import PageNumberPagination

from addressesapp.serializers import AddressesSerializer

from addressesapp.models import Person

class LargeResultsSetPagination(PageNumberPagination):

Getting Started with Django

[208]

 page_size = 1000

 page_size_query_param = 'page_size'

 max_page_size = 10000

class AddressesList(generics.ListAPIView):

 serializer_class = AddressesSerializer

 permission_classes = (AllowAny,)

 pagination_class = LargeResultsSetPagination

 def get_queryset(self):

 query = self.request.query_params.get

 if query('name'):

 return Person.objects.filter(name=query('name'))

 else:

 return Person.objects.all()

We have used the ListAPIView class to return all Person objects, or only the one
that matches the name value. Since the returned list may be too large, we need to
override the PageNumberPagination class to show more objects on the same page;
the LargeResultsSetPagination class allows a maximum of 10,000 objects per
page. This API needs to transform the Person objects to a JSON format object,
which is performed by the AddressesSerializer serializer implemented in
serializers.py:

from addressesapp.models import Person

from rest_framework import serializers

class AddressesSerializer(serializers.HyperlinkedModelSerializer):

 class Meta:

 model = Person

 fields = ('id', 'name', 'mail')

Now the address book can be retrieved using the curl command:

curl -X GET http://localhost:8000/addresses-list/

http://localhost:8000/addresses-list/

Chapter 6

[209]

Note the forward slash at the end of the URL. In the same way, we can specify a
name value to get their email:

curl -X GET http://localhost:8000/addresses-st/?name=name_value

Note that we can always specify the page query parameter, in case the number of
contacts is too large (or change the pagination size value). In the urls.py file, we
also defined the docs URL to be our Swagger RESTful API, which allows the user to
explore and test the API using a browser:

This is a user-friendly way to verify that the API is working as expected and the data
is shown in the correct format.

http://localhost:8000/addresses-st/?name=name_value
http://localhost:8000/addresses-st/?name=name_value
http://localhost:8000/addresses-st/?name=name_value

Getting Started with Django

[210]

Summary
In this chapter, we have discussed how to create a web application using the
Django framework. The main features of Django, such as the models, admin, views,
commands, shell, and the RESTful API, have been described, so the reader should
now have the necessary knowledge to develop a web application in a real-life scenario.

We will use this knowledge, together with what we have learned in the preceding
chapters, to build our movie recommendation engine and movie sentiment analysis
application in the following two chapters.

[211]

Movie Recommendation
System Web Application

The purpose of this chapter is to explain a real case example of the recommendation
system in action, using the Django framework. We are going to implement a
movie recommendation system in which each user that subscribes to the service
will receive suggested movies based on his preferences as we have discussed
in Chapter 5, Recommendation systems, also we are going to use the same data
which consists of 603 movies rated more than 50 times by 942 users. In order to
receive recommendations, each user has to rate a certain number of movies, so an
information retrieval system (Chapter 4, Web-mining techniques) to search the movies
to rate is implemented. The different parts of the Django application are going to
be discussed: settings, models, user login/logout, commands, information retrieval
system, recommendation systems, an admin interface and APIs (all the code is
available on the GitHub of the author chapter_7 folder at https://github.com/
ai2010/machine_learning_for_the_web/tree/master/chapter_7). Since
Chapter 6, Basics of Django: a simple web framework just introduced the main features
of Django, whenever a new feature is employed a technical explanation is also
provided. Now we can start describing the different settings and the initial setup
to run the application.

Application setup
We create and start Django as usual:

django-admin startproject server_movierecsys

and from the server_movierecsys folder we start the application:

python manage.py startapp books_recsys_app

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_7
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_7

Movie Recommendation System Web Application

[212]

Now the settings.py needs to be configured. As we see in Chapter 6, Basics of
Django: a simple web framework we set the installed apps, HTML templates, a layout
formatting folder, and an SQLite database:

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'rest_framework',
 'rest_framework_swagger',
 'books_recsys_app',
)

TEMPLATE_DIRS = (
 os.path.join(BASE_DIR, 'templates'),
)
STATIC_URL = '/static/'
STATICFILES_DIRS = (os.path.join(BASE_DIR, "static"),)
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Apart from the standard apps, and the rest framework (swagger), the
books_recsys_app has been included in the installed apps list.

In this case, we need to load data persistently in the memory so that the user
experience is improved by not calculating or retrieving data at each user request. To
save data or the results of expensive calculations in the memory, we set up the cache
system of Django in settings.py:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.filebased.
FileBasedCache',
 'LOCATION': '/var/tmp/django_cache',
 'TIMEOUT': None,
 }
}

Chapter 7

[213]

We have chosen the File Based Cache cache type stored in /var/tmp/django_cache
and a None timeout which means the data in the cache will never expire.

To use the admin interface, we set up the superuser account through the command:

python manage.py createsuperuser (admin/admin)

The application is live at http://localhost:8000/ by typing:

python manage.py runserver

Models
In this application, we need to store the data related to each movie and the movies'
ratings from each user of the website. We set up three models:

class UserProfile(models.Model):
 user = models.ForeignKey(User, unique=True)
 array = jsonfield.JSONField()
 arrayratedmoviesindxs = jsonfield.JSONField()
 lastrecs = jsonfield.JSONField()

 def __unicode__(self):
 return self.user.username

 def save(self, *args, **kwargs):
 create = kwargs.pop('create', None)
 recsvec = kwargs.pop('recsvec', None)
 print 'create:',create
 if create==True:
 super(UserProfile, self).save(*args, **kwargs)
 elif recsvec!=None:
 self.lastrecs = json.dumps(recsvec.tolist())
 super(UserProfile, self).save(*args, **kwargs)
 else:
 nmovies = MovieData.objects.count()
 array = np.zeros(nmovies)
 ratedmovies = self.ratedmovies.all()
 self.arrayratedmoviesindxs = json.dumps([m.movieindx for m
in ratedmovies])
 for m in ratedmovies:
 array[m.movieindx] = m.value
 self.array = json.dumps(array.tolist())

Movie Recommendation System Web Application

[214]

 super(UserProfile, self).save(*args, **kwargs)

class MovieRated(models.Model):
 user = models.ForeignKey(UserProfile, related_name='ratedmovies')
 movie = models.CharField(max_length=100)
 movieindx = models.IntegerField(default=-1)
 value = models.IntegerField()

class MovieData(models.Model):
 title = models.CharField(max_length=100)
 array = jsonfield.JSONField()
 ndim = models.IntegerField(default=300)
 description = models.TextField()

The model MovieData stores the data for each movie: title, description, and vector
representation (ndim is the dimension of the vector representation). MovieRated
records each movie rated by the user logged in (each object MovieRated is associated
with has a UserProfile that utilizes the website). The UserProfile model stores
all the users that sign up to the website, so they can rate movies and receive
recommendations. Each UserProfile extends the default Django user model
by adding the array field, which stores all the movie's ratings from the user,
and the recsvec field which stores his last recommendations: the save function
is overridden to fill the array field with all the MovieRated objects associated
with the user (if the else statement is true), and to fill the lastrecs field with
the last recommendations (else if statement). Note that the MovieRated model
has a UserProfile foreign key with the related_name equal to ratedmovies: in
the save function of the UserProfile model, self.ratedmovies.all() refers
to all the RatedMovie objects that have the same UserProfile value. The field
arrayratedmoviesindxs on the UserProfile model records all the movies rated by
the user and it is used by the API of the application.

To write these data structures on the database we need to run:

python manage.py makemigrations

python manage.py migrate

Chapter 7

[215]

Commands
The commands used in this application are needed to load the data into the memory
(cache) and make the user experience fast. Although the movie database is the same
used in Chapter 4, Web mining techniques (that is 603 movies rated more than 50 times
by 942 users), each movie needs a description to set up an information retrieval
system on the movies to rate. The first command we develop takes all the movie
titles in the utility matrix used in Chapter 4, Web Mining Techniques and collects the
corresponding descriptions from Open Movie Database (OMDb) online service:

from django.core.management.base import BaseCommand
import os
import optparse
import numpy as np
import json
import pandas as pd
import requests
class Command(BaseCommand):

 option_list = BaseCommand.option_list + (
 optparse.make_option('-i', '--input', dest='umatrixfile',
 type='string', action='store',
 help=('Input utility matrix')),
 optparse.make_option('-o', '--outputplots',
dest='plotsfile',
 type='string', action='store',
 help=('output file')),
 optparse.make_option('--om', '--outputumatrix',
dest='umatrixoutfile',
 type='string', action='store',
 help=('output file')),
)

 def getplotfromomdb(self,col,df_moviesplots,df_movies,df_
utilitymatrix):
 string = col.split(';')[0]

 title=string[:-6].strip()
 year = string[-5:-1]

Movie Recommendation System Web Application

[216]

 plot = ' '.join(title.split(' ')).encode('ascii','ignore')+'.
'

 url = "http://www.omdbapi.com/?t="+title+"&y="+year+"&plot=fu
ll&r=json"

 headers={"User-Agent": "Mozilla/5.0 (Windows NT 6.3; Win64;
x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2049.0
Safari/537.36"}
 r = requests.get(url,headers=headers)
 jsondata = json.loads(r.content)
 if 'Plot' in jsondata:
 #store plot + title
 plot += jsondata['Plot'].encode('ascii','ignore')

 if plot!=None and plot!='' and plot!=np.nan and
len(plot)>3:#at least 3 letters to consider the movie
 df_moviesplots.loc[len(df_moviesplots)]=[string,plot]
 df_utilitymatrix[col] = df_movies[col]
 print len(df_utilitymatrix.columns)

 return df_moviesplots,df_utilitymatrix

 def handle(self, *args, **options):
 pathutilitymatrix = options['umatrixfile']
 df_movies = pd.read_csv(pathutilitymatrix)
 movieslist = list(df_movies.columns[1:])

 df_moviesplots = pd.DataFrame(columns=['title','plot'])
 df_utilitymatrix = pd.DataFrame()
 df_utilitymatrix['user'] = df_movies['user']

 for m in movieslist[:]:
 df_moviesplots,df_utilitymatrix=self.getplotfromomdb(m,df_
moviesplots,df_movies,df_utilitymatrix)

 outputfile = options['plotsfile']
 df_moviesplots.to_csv(outputfile, index=False)
 outumatrixfile = options['umatrixoutfile']
 df_utilitymatrix.to_csv(outumatrixfile, index=False)

The command syntax is:

python manage.py --input=utilitymatrix.csv --outputplots=plots.csv –
outputumatrix='umatrix.csv'

Chapter 7

[217]

Each movie title contained in the utilitymatrix file is used by the
getplotfromomdb function to retrieve the movie's description (plot) from the
website http://www.omdbapi.com/ using the requests in the Python module. The
descriptions (and titles) of the movies are then saved in a CSV file (outputplots)
together with the corresponding utility matrix (outputumatrix).

The other command will take the movie's descriptions and create an information
retrieval system (Term Frequency, Inverse Document Frequency (TF-IDF) model)
to allow the user to find movies typing some relevant words. This tf-idf model is
then saved in the Django cache together with the initial recommendation systems
models (CF item-based and log-likelihood ratio). The code is as follows:

from django.core.management.base import BaseCommand
import os
import optparse
import numpy as np
import pandas as pd
import math
import json
import copy
from BeautifulSoup import BeautifulSoup
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import WordPunctTokenizer
tknzr = WordPunctTokenizer()
#nltk.download('stopwords')
stoplist = stopwords.words('english')
from nltk.stem.porter import PorterStemmer
stemmer = PorterStemmer()
from sklearn.feature_extraction.text import TfidfVectorizer
from books_recsys_app.models import MovieData
from django.core.cache import cache

class Command(BaseCommand):

 option_list = BaseCommand.option_list + (
 optparse.make_option('-i', '--input', dest='input',
 type='string', action='store',
 help=('Input plots file')),
 optparse.make_option('--nmaxwords', '--nmaxwords',
dest='nmaxwords',
 type='int', action='store',
 help=('nmaxwords')),
 optparse.make_option('--umatrixfile', '--umatrixfile',
dest='umatrixfile',

http://www.omdbapi.com/

Movie Recommendation System Web Application

[218]

 type='string', action='store',
 help=('umatrixfile')),
)

 def PreprocessTfidf(self,texts,stoplist=[],stem=False):
 newtexts = []
 for i in xrange(len(texts)):
 text = texts[i]
 if stem:
 tmp = [w for w in tknzr.tokenize(text) if w not in
stoplist]
 else:
 tmp = [stemmer.stem(w) for w in [w for w in tknzr.
tokenize(text) if w not in stoplist]]
 newtexts.append(' '.join(tmp))
 return newtexts

 def handle(self, *args, **options):
 input_file = options['input']

 df = pd.read_csv(input_file)
 tot_textplots = df['plot'].tolist()
 tot_titles = df['title'].tolist()
 nmaxwords=options['nmaxwords']
 vectorizer = TfidfVectorizer(min_df=0,max_features=nmaxwords)
 processed_plots = self.PreprocessTfidf(tot_
textplots,stoplist,True)
 mod_tfidf = vectorizer.fit(processed_plots)
 vec_tfidf = mod_tfidf.transform(processed_plots)
 ndims = len(mod_tfidf.get_feature_names())
 nmovies = len(tot_titles[:])

 #delete all data
 MovieData.objects.all().delete()

 matr = np.empty([1,ndims])
 titles = []
 cnt=0
 for m in xrange(nmovies):
 moviedata = MovieData()
 moviedata.title=tot_titles[m]
 moviedata.description=tot_textplots[m]
 moviedata.ndim= ndims
 moviedata.array=json.dumps(vec_tfidf[m].toarray()[0].
tolist())

Chapter 7

[219]

 moviedata.save()
 newrow = moviedata.array
 if cnt==0:
 matr[0]=newrow
 else:
 matr = np.vstack([matr, newrow])
 titles.append(moviedata.title)
 cnt+=1
 #cached
 cache.set('data', matr)
 cache.set('titles', titles)
 cache.set('model',mod_tfidf)

 #load the utility matrix
 umatrixfile = options['umatrixfile']
 df_umatrix = pd.read_csv(umatrixfile)
 Umatrix = df_umatrix.values[:,1:]
 cache.set('umatrix',Umatrix)
 #load rec methods...
 cf_itembased = CF_itembased(Umatrix)
 cache.set('cf_itembased',cf_itembased)
 llr = LogLikelihood(Umatrix,titles)
 cache.set('loglikelihood',llr)

from scipy.stats import pearsonr
from scipy.spatial.distance import cosine
def sim(x,y,metric='cos'):
 if metric == 'cos':
 return 1.-cosine(x,y)
 else:#correlation
 return pearsonr(x,y)[0]

class CF_itembased(object):
...
class LogLikelihood(object):
...

To run the command the syntax is:

python manage.py load_data --input=plots.csv --nmaxwords=30000
--umatrixfile=umatrix.csv

Movie Recommendation System Web Application

[220]

The input parameter takes the movie's descriptions obtained using the
get_plotsfromtitles command and creates a tf-idf model (see Chapter 4,
Web-mining techniques) using a maximum of words specified by the nmaxwords
parameter. The data of each movie is also saved in a MovieData object (title,
tf-idf representation, description, and ndim number of words of the tf-idf
vocabulary). Note that the first time the command is run the stopwords from
nltk.download('stopwords') (commented in the preceding code) need to be
downloaded.

The tf-idf model, the title's list, and the matrix of the tf-idf movies' representations,
are saved in the Django cache using the commands:

from django.core.cache import cache
...
cache.set('model',mod_tfidf)
cache.set('data', matr)
cache.set('titles', titles)

Note that the cache Django module (django.core.cache) needs
to be loaded (at the beginning of the file) to be used.

In the same way, the utility matrix (umatrixfile parameter) is used to initialize
the two recommendation systems used by the application: item-based collaborative
filtering and log-likelihood ratio method. Both methods are not written in the
preceding code because they are essentially the same as the code described in
Chapter 5, Recommendation systems (the full code can be seen in the chapter_7 folder
of the author's GitHub repository as usual). The methods and the utility matrix are
then loaded into the Django cache ready to use:

cache.set('umatrix',Umatrix)
 cache.set('cf_itembased',cf_itembased)
 cache.set('loglikelihood',llr)

Now the data (and models) can be used in the web pages just by calling the
corresponding name, as we will see in the following sections.

Chapter 7

[221]

User sign up login/logout implementation
This application can recommend movies to different users that are registered on
the website. To manage the registration process, we use the standard User Django
module as we have seen in the Models sections. Each page of the website refers to the
base.html page, which implements a top bar that allows the user to register or sign
in (right side):

Clicking on one of the two buttons sign in or sign up will activate the code:

 <form class="navbar-search pull-right" action="{% url
'auth' %}" method="GET">
 {% csrf_token %}
 <div style="overflow: hidden; padding-right:
.5em;">
 <input type="submit" name="auth_method"
value="sign up" size="30" style="float: right" />
 <input type="submit" name="auth_method"
value="sign in" size="30" style="float: right" />
 </div>
 </form>

The two methods refer to the urls.py:

 url(r'^auth/', 'books_recsys_app.views.auth', name='auth')

This calls the auth function in the views.py:

def auth(request):
 if request.method == 'GET':
 data = request.GET
 auth_method = data.get('auth_method')
 if auth_method=='sign in':
 return render_to_response(
 'books_recsys_app/signin.html', RequestContext(request,
{}))
 else:
 return render_to_response(
 'books_recsys_app/createuser.html',
RequestContext(request, {}))
 elif request.method == 'POST':
 post_data = request.POST

Movie Recommendation System Web Application

[222]

 name = post_data.get('name', None)
 pwd = post_data.get('pwd', None)
 pwd1 = post_data.get('pwd1', None)
 create = post_data.get('create', None)#hidden input
 if name and pwd and create:
 if User.objects.filter(username=name).exists() or
pwd!=pwd1:
 return render_to_response(
 'books_recsys_app/userexistsorproblem.html',
RequestContext(request))
 user = User.objects.create_user(username=name,password=pwd)
 uprofile = UserProfile()
 uprofile.user = user
 uprofile.name = user.username
 uprofile.save(create=True)

 user = authenticate(username=name, password=pwd)
 login(request, user)
 return render_to_response(
 'books_recsys_app/home.html', RequestContext(request))
 elif name and pwd:
 user = authenticate(username=name, password=pwd)
 if user:
 login(request, user)
 return render_to_response(
 'books_recsys_app/home.html',
RequestContext(request))
 else:
 #notfound
 return render_to_response(
 'books_recsys_app/nopersonfound.html',
 RequestContext(request))

Chapter 7

[223]

The function will redirect to the sign up page as shown in the following screenshot:

If you have already registered, it will take you to the sign in page as shown in the
following screenshot:

The page allows the user to create a username and password and log in to the
website. The data is then used to create a new object of the User Django model and
the related UserProfile object (note that the create argument is True to save the
object without associating an array of rated movies):

user = User.objects.create_user(username=name,password=pwd)
uprofile = UserProfile()
uprofile.user = user
uprofile.save(create=True)
user = authenticate(username=name, password=pwd)

Movie Recommendation System Web Application

[224]

The user is then logged in using the standard Django methods:

from django.contrib.auth import authenticate, login
...
login(request, user)

Hence, the website top bar looks like (username:a) as shown in the following
screenshot:

Note that in cases where a user with the same name already exists (new sign up
exception event) or where a user is not found (sign in exception event), both are
implemented and the reader can look into the code to understand how these events
are handled.

The sign out button refers to the urls.py:

url(r'^signout/','books_recsys_app.views.signout',name='signout')

This calls the signout function from views.py:

from django.contrib.auth import logout
…
def signout(request):
 logout(request)
 return render_to_response(
 'books_recsys_app/home.html', RequestContext(request))

The function uses the standard Django logout method and redirects to the home
page (the sign in and sign out buttons will be shown again in the top bar). The user
can now search for movies to rate using the information retrieval system (search
engine) described in the next section.

Chapter 7

[225]

Information retrieval system (movies
query)
In order to rate movies, the user needs to search for them using the home page:

By Typing some relevant words in the text box, the page will call (through the urls.
py corresponding home URL) the home function in the views.py file:

def home(request):
 context={}
 if request.method == 'POST':
 post_data = request.POST
 data = {}
 data = post_data.get('data', None)
 if data:
 return redirect('%s?%s' % (reverse('books_recsys_app.
views.home'),
 urllib.urlencode({'q': data})))
 elif request.method == 'GET':
 get_data = request.GET
 data = get_data.get('q',None)
 titles = cache.get('titles')
 if titles==None:
 print 'load data...'
 texts = []
 mobjs = MovieData.objects.all()
 ndim = mobjs[0].ndim
 matr = np.empty([1,ndim])
 titles_list = []
 cnt=0
 for obj in mobjs[:]:

Movie Recommendation System Web Application

[226]

 texts.append(obj.description)
 newrow = np.array(obj.array)
 #print 'enw:',newrow
 if cnt==0:
 matr[0]=newrow
 else:
 matr = np.vstack([matr, newrow])
 titles_list.append(obj.title)
 cnt+=1
 vectorizer = TfidfVectorizer(min_df=1,max_features=ndim)
 processedtexts = PreprocessTfidf(texts,stoplist,True)
 model = vectorizer.fit(processedtexts)
 cache.set('model',model)
 #cache.set('processedtexts',processedtexts)
 cache.set('data', matr)
 cache.set('titles', titles_list)
 else:
 print 'loaded',str(len(titles))

 Umatrix = cache.get('umatrix')
 if Umatrix==None:
 df_umatrix = pd.read_csv(umatrixpath)
 Umatrix = df_umatrix.values[:,1:]
 cache.set('umatrix',Umatrix)
 cf_itembased = CF_itembased(Umatrix)
 cache.set('cf_itembased',cf_itembased)
 cache.set('loglikelihood',LogLikelihood(Umatrix,moviesli
st))

 if not data:
 return render_to_response(
 'books_recsys_app/home.html', RequestContext(request,
context))

 #load all movies vectors/titles
 matr = cache.get('data')
 titles = cache.get('titles')
 model_tfidf = cache.get('model')
 #find movies similar to the query
 queryvec = model_tfidf.transform([data.lower().
encode('ascii','ignore')]).toarray()
 sims= cosine_similarity(queryvec,matr)[0]
 indxs_sims = list(sims.argsort()[::-1])

Chapter 7

[227]

 titles_query = list(np.array(titles)[indxs_sims]
[:nmoviesperquery])

 context['movies']= zip(titles_query,indxs_
sims[:nmoviesperquery])
 context['rates']=[1,2,3,4,5]
 return render_to_response(
 'books_recsys_app/query_results.html',
 RequestContext(request, context))

The data parameter at the beginning of the function will store the typed query and
the function will use it to transform it to a vector tf-idf representation using the
model already loaded in memory by the load_data command:

 matr = cache.get('data')
 titles = cache.get('titles')
 model_tfidf = cache.get('model')

Also the matrix (key: matr) and the movies' titles (key: titles) are retrieved from
the cache to return the list of movies similar to the query vector (see Chapter 4, Web-
mining techniques for further details). Also note that in case the cache is empty, the
models (and the other data) are created and loaded in memory directly from the first
call of this function. For example, we can type war as a query and the website will
return the most similar movies to this query (query_results.html):

As we can see, we have five movies (at the beginning of the views.py file we can set
the number of movies per query parameter: nmoviesperquery) and most of them
are related to war. From this page we can rate the movies as we discuss in the
following section.

Movie Recommendation System Web Application

[228]

Rating system
Each user (when logged in) can rate movies simply by clicking on the rate value (1 to
5) at the side of the movie title in the movies' results page (see preceding screenshot).
This action will trigger the rate_movie function in the views.py file (through the
corresponding URL in urls.py):

def rate_movie(request):
 data = request.GET
 rate = data.get("vote")
 movies,moviesindxs = zip(*literal_eval(data.get("movies")))
 movie = data.get("movie")
 movieindx = int(data.get("movieindx"))
 #save movie rate
 userprofile = None
 if request.user.is_superuser:
 return render_to_response(
 'books_recsys_app/superusersignin.html',
RequestContext(request))
 elif request.user.is_authenticated() :
 userprofile = UserProfile.objects.get(user=request.user)
 else:
 return render_to_response(
 'books_recsys_app/pleasesignin.html',
RequestContext(request))

 if MovieRated.objects.filter(movie=movie).
filter(user=userprofile).exists():
 mr = MovieRated.objects.get(movie=movie,user=userprofile)
 mr.value = int(rate)
 mr.save()
 else:
 mr = MovieRated()
 mr.user = userprofile
 mr.value = int(rate)
 mr.movie = movie
 mr.movieindx = movieindx
 mr.save()

 userprofile.save()
 #get back the remaining movies
 movies = RemoveFromList(movies,movie)
 moviesindxs = RemoveFromList(moviesindxs,movieindx)
 print movies
 context = {}

Chapter 7

[229]

 context["movies"] = zip(movies,moviesindxs)
 context["rates"] = [1,2,3,4,5]
 return render_to_response(
 'books_recsys_app/query_results.html',
 RequestContext(request, context))

The function will store the rate of the movie in an object of the MovieRated model,
and the corresponding movies rate vector of the user is updated (through the
userprofile.save()). The movies not rated are then sent back to the page query_
results.html. Note that the user needs to be logged in to rate a movie or the exception
event that will ask the user to sign in will be shown (page: pleasesignin.html).

Recommendation systems
This function will use the parameters set at the beginning of the views.py file:

nminimumrates=5
numrecs=5
recmethod = 'loglikelihood'

This defines the minimum number of movies to rate before obtaining
recommendations, the number of recommendations to show to the user, and the
recommendation system method respectively. To show recommendations the user
can click on the Recommendations button on the top bar:

This action will trigger the movies_recs function in the views.py file (through the
corresponding URL defined in the urls.py file):

def movies_recs(request):

 userprofile = None
 if request.user.is_superuser:
 return render_to_response(
 'books_recsys_app/superusersignin.html',
RequestContext(request))
 elif request.user.is_authenticated():
 userprofile = UserProfile.objects.get(user=request.user)
 else:
 return render_to_response(
 'books_recsys_app/pleasesignin.html',
RequestContext(request))

Movie Recommendation System Web Application

[230]

 ratedmovies=userprofile.ratedmovies.all()
 context = {}
 if len(ratedmovies)<nminimumrates:
 context['nrates'] = len(ratedmovies)
 context['nminimumrates']=nminimumrates
 return render_to_response(
 'books_recsys_app/underminimum.html',
RequestContext(request, context))

 u_vec = np.array(userprofile.array)
 Umatrix = cache.get('umatrix')
 movieslist = cache.get('titles')
 #recommendation...
 u_rec = None
 if recmethod == 'cf_userbased':
 u_rec = CF_userbased(u_vec,numrecs,Umatrix)
 elif recmethod == 'cf_itembased':
 cf_itembased = cache.get('cf_itembased')
 if cf_itembased == None:
 cf_itembased = CF_itembased(Umatrix)
 u_rec = cf_itembased.CalcRatings(u_vec,numrecs)
 elif recmethod == 'loglikelihood':
 llr = cache.get('loglikelihood')
 if llr == None:
 llr = LogLikelihood(Umatrix,movieslist)
 u_rec = llr.GetRecItems(u_vec,True)
 #save last recs
 userprofile.save(recsvec=u_rec)
 context['recs'] = list(np.array(movieslist)[list(u_rec)]
[:numrecs])
 return render_to_response(
 'books_recsys_app/recommendations.html',
 RequestContext(request, context))

Chapter 7

[231]

The function will retrieve the rated movies vector from the corresponding
UserProfile object and it will load the recommendation system method (specified
by the recmethod parameter) from cache. The recommendations are first stored in
the userprofile object and then returned to the recommendations.html page. For
example, using the cf_itembased method:

This is a sample result page after rating the five movies related to the word war
(see preceding screenshot). The reader can play more with the parameters and the
different algorithms to evaluate the differences.

Admin interface and API
In order to manage the data of the application, the admin interface and an API point
can be set. From the admin panel we can see both the movie's data, and the user
registered, writing the following admin.py file:

from django.contrib import admin
from books_recsys_app.models import MovieData,UserProfile

class MoviesAdmin(admin.ModelAdmin):
 list_display = ['title', 'description']

admin.site.register(UserProfile)
admin.site.register(MovieData,MoviesAdmin)

After setting the corresponding admin URL on the urls.py file:

url(r'^admin/', include(admin.site.urls))

Movie Recommendation System Web Application

[232]

We should see our admin panel (at http://localhost:8000/admin/) with the
two models and the data within the models resembles the fields specified in the
admin.py file:

To set the API endpoint to retrieve the data for each registered user, first we need to
write out serializers.py specifying which fields of the UserProfile model we
want to employ:

from books_recsys_app.models import UserProfile
from rest_framework import serializers

class UsersSerializer(serializers.HyperlinkedModelSerializer):
 class Meta:
 model = UserProfile
 fields = ('name', 'arrayratedmoviesindxs','lastrecs')

In this case, we want to collect the ID of the movies, rated by the user, and his last
recommended movie's ID. Then the API is set in the api.py file as follows:

from rest_framework import generics
from rest_framework.permissions import AllowAny
from rest_framework.pagination import PageNumberPagination
from books_recsys_app.serializers import UsersSerializer
from books_recsys_app.models import UserProfile

class LargeResultsSetPagination(PageNumberPagination):
 page_size = 1000
 page_size_query_param = 'page_size'
 max_page_size = 10000

class UsersList(generics.ListAPIView):

 serializer_class = UsersSerializer

Chapter 7

[233]

 permission_classes = (AllowAny,)
 pagination_class = LargeResultsSetPagination

 def get_queryset(self):
 query = self.request.query_params.get
 if query('name'):
 return UserProfile.objects.filter(name=query('name'))
 else:
 return UserProfile.objects.all()

Note that a query parameter name is allowed in case we want to collect only the data
for one particular user. After setting the corresponding URL in the urls.py file:

url(r'^users-list/',UsersList.as_view(),name='users-list')

The end point can be called through the curl command using the terminal:

curl -X GET localhost:8000/users-list/

It can also be called using the swagger interface for testing purposes (see Chapter 6,
Basics of Django: a simple web framework).

Summary
We have just shown how to build an application to recommend movies using the
Django framework. You now should have some degree of confidence in how to
develop a professional web application using Python and the machine-learning
algorithms that power it.

In the next chapter, an additional example on a movie's web sentiment reception will
give you even more understanding to efficiently write your own machine-learning
web application in Python.

[235]

Sentiment Analyser
Application for Movie

Reviews
In this chapter, we describe an application to determine the sentiment of movie
reviews using algorithms and methods described throughout the book. In addition,
the Scrapy library will be used to collect reviews from different websites through a
search engine API (Bing search engine). The text and the title of the movie review
is extracted using the newspaper library or following some pre-defined extraction
rules of an HTML format page. The sentiment of each review is determined using a
naive Bayes classifier on the most informative words (using the X2 measure) in the
same way as in Chapter 4, Web Mining Techniques. Also, the rank of each page related
to each movie query is calculated for completeness using the PageRank algorithm
discussed in Chapter 4, Web Mining Techniques. This chapter will discuss the code
used to build the application, including the Django models and views and the Scrapy
scraper is used to collect data from the web pages of the movie reviews. We start
by giving an example of what the web application will be and explaining the search
engine API used and how we include it in the application. We then describe how
we collect the movie reviews, integrating the Scrapy library into Django, the models
to store the data, and the main commands to manage the application. All the code
discussed in this chapter is available in the GitHub repository of the author inside
the chapter_8 folder at https://github.com/ai2010/machine_learning_for_
the_web/tree/master/chapter_8.

https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/
https://github.com/ai2010/machine_learning_for_the_web/tree/master/chapter_2/

Sentiment Analyser Application for Movie Reviews

[236]

Application usage overview
The home web page is as follows:

The user can type in the movie name, if they want to know the review's sentiments
and relevance. For example, we look for Batman vs Superman Dawn of Justice in the
following screenshot:

Chapter 8

[237]

The application collects and scrapes 18 reviews from the Bing search engine and,
using the Scrapy library, it analyzes their sentiment (15 positive and 3 negative). All
data is stored in Django models, ready to be used to calculate the relevance of each
page using the PageRank algorithm (the links at the bottom of the page as seen in
the preceding screenshot). In this case, using the PageRank algorithm, we have
the following:

This is a list of the most relevant pages to our movie review search, setting a depth
parameter 2 on the scraping crawler (refer the following section for further details).
Note that to have a good result on page relevance, you have to crawl thousands of
pages (the preceding screenshot shows results for around 50 crawled pages).

To write the application, we start the server as usual (see Chapter 6, Getting Started
with Django, and Chapter 7, Movie Recommendation System Web Application) and the
main app in Django. First, we create a folder to store all our codes, movie_reviews_
analyzer_app, and then we initialize Django using the following command:

mkdir movie_reviews_analyzer_app

cd movie_reviews_analyzer_app

django-admin startproject webmining_server

python manage.py startapp startapp pages

We set the settings in the .py file as we did in the Settings section of Chapter 6,
Getting Started with Django, and the Application Setup section of Chapter 7,
Movie Recommendation System Web Application (of course, in this case the
name is webmining_server instead of server_movierecsys).

Sentiment Analyser Application for Movie Reviews

[238]

The sentiment analyzer application has the main views in the .py file in the main
webmining_server folder instead of the app (pages) folder as we did previously (see
Chapter 6, Getting Started with Django, and Chapter 7, Movie Recommendation System
Web Application), because the functions now refer more to the general functioning of
the server instead of the specific app (pages).

The last operation to make the web service operational is to create a superuser
account and go live with the server:

python manage.py createsuperuser (admin/admin)

python manage.py runserver

Now that the structure of the application has been explained, we can discuss the
different parts in more detail starting from the search engine API used to collect URLs.

Search engine choice and the application
code
Since scraping directly from the most relevant search engines such as Google,
Bing, Yahoo, and others is against their term of service, we need to take initial
review pages from their REST API (using scraping services such as Crawlera,
http://crawlera.com/, is also possible). We decided to use the Bing service,
which allows 5,000 queries per month for free.

In order to do that, we register to the Microsoft Service to obtain the key needed to
allow the search. Briefly, we followed these steps:

1. Register online on https://datamarket.azure.com.
2. In My Account, take the Primary Account Key.
3. Register a new application (under DEVELOPERS | REGISTER; put

Redirect URI: https://www.bing.com)

After that, we can write a function that retrieves as many URLs relevant to our query
as we want:

num_reviews = 30
def bing_api(query):
 keyBing = API_KEY # get Bing key from: https://datamarket.
azure.com/account/keys
 credentialBing = 'Basic ' + (':%s' % keyBing).encode('base64')[:-
1] # the "-1" is to remove the trailing "\n" which encode adds
 searchString = '%27X'+query.replace(" ",'+')+'movie+review%27'

http://crawlera.com/
http://crawlera.com/
https://datamarket.azure.com
https://www.bing.com/

Chapter 8

[239]

 top = 50#maximum allowed by Bing

 reviews_urls = []
 if num_reviews<top:
 offset = 0
 url = 'https://api.datamarket.azure.com/Bing/Search/Web?' + \
 'Query=%s&$top=%d&$skip=%d&$format=json' %
(searchString, num_reviews, offset)

 request = urllib2.Request(url)
 request.add_header('Authorization', credentialBing)
 requestOpener = urllib2.build_opener()
 response = requestOpener.open(request)
 results = json.load(response)
 reviews_urls = [d['Url'] for d in results['d']['results']]
 else:
 nqueries = int(float(num_reviews)/top)+1
 for i in xrange(nqueries):
 offset = top*i
 if i==nqueries-1:
 top = num_reviews-offset
 url = 'https://api.datamarket.azure.com/Bing/Search/
Web?' + \
 'Query=%s&$top=%d&$skip=%d&$format=json' %
(searchString, top, offset)

 request = urllib2.Request(url)
 request.add_header('Authorization', credentialBing)
 requestOpener = urllib2.build_opener()
 response = requestOpener.open(request)
 else:
 top=50
 url = 'https://api.datamarket.azure.com/Bing/Search/
Web?' + \
 'Query=%s&$top=%d&$skip=%d&$format=json' %
(searchString, top, offset)

 request = urllib2.Request(url)
 request.add_header('Authorization', credentialBing)
 requestOpener = urllib2.build_opener()
 response = requestOpener.open(request)
 results = json.load(response)
 reviews_urls += [d['Url'] for d in results['d']
['results']]
 return reviews_urls

Sentiment Analyser Application for Movie Reviews

[240]

The API_KEY parameter is taken from the Microsoft account, query is a string
which specifies the movie name, and num_reviews = 30 is the number of URLs
returned in total from the Bing API. With the list of URLs that contain the reviews,
we can now set up a scraper to extract from each web page the title and the review
text using Scrapy.

Scrapy setup and the application code
Scrapy is a Python library is used to extract content from web pages or to crawl
pages linked to a given web page (see the Web crawlers (or spiders) section of
Chapter 4, Web Mining Techniques, for more details). To install the library, type
the following in the terminal:

sudo pip install Scrapy

Install the executable in the bin folder:

sudo easy_install scrapy

From the movie_reviews_analyzer_app folder, we initialize our Scrapy project as
follows:

scrapy startproject scrapy_spider

This command will create the following tree inside the scrapy_spider folder:

├── __init__.py

├── items.py

├── pipelines.py

├── settings.py

├── spiders

│ ├── __init__.py

The pipelines.py and items.py files manage how the scraped data is stored and
manipulated, and they will be discussed later in the Spiders and Integrate Django with
Scrapy sections. The settings.py file sets the parameters each spider (or crawler)
defined in the spiders folder uses to operate. In the following two sections, we
describe the main parameters and spiders used in this application.

Chapter 8

[241]

Scrapy settings
The settings.py file collects all the parameters used by each spider in the Scrapy
project to scrape web pages. The main parameters are as follows:

• DEPTH_LIMIT: The number of subsequent pages crawled following an initial
URL. The default is 0 and it means that no limit is set.

• LOG_ENABLED: To allow/deny Scrapy to log on the terminal while executing
default is true.

• ITEM_PIPELINES = {'scrapy_spider.pipelines.ReviewPipeline':
1000,}: The path of the pipeline function to manipulate data extracted from
each web page.

• CONCURRENT_ITEMS = 200: The number of concurrent items processed in
the pipeline.

• CONCURRENT_REQUESTS = 5000: The maximum number of simultaneous
requests handled by Scrapy.

• CONCURRENT_REQUESTS_PER_DOMAIN = 3000: The maximum number of
simultaneous requests handled by Scrapy for each specified domain.

The larger the depth, more the pages are scraped and, consequently, the time needed
to scrape increases. To speed up the process, you can set high value on the last three
parameters. In this application (the spiders folder), we set two spiders: a scraper to
extract data from each movie review URL (movie_link_results.py) and a crawler
to generate a graph of webpages linked to the initial movie review URL (recursive_
link_results.py).

Scraper
The scraper on movie_link_results.py looks as follows:

from newspaper import Article

from urlparse import urlparse

from scrapy.selector import Selector

from scrapy import Spider

from scrapy.spiders import BaseSpider,CrawlSpider, Rule

from scrapy.http import Request

from scrapy_spider import settings

from scrapy_spider.items import PageItem,SearchItem

unwanted_domains = ['youtube.com','www.youtube.com']

Sentiment Analyser Application for Movie Reviews

[242]

from nltk.corpus import stopwords

stopwords = set(stopwords.words('english'))

def CheckQueryinReview(keywords,title,content):

 content_list = map(lambda x:x.lower(),content.split(' '))

 title_list = map(lambda x:x.lower(),title.split(' '))

 words = content_list+title_list

 for k in keywords:

 if k in words:

 return True

 return False

class Search(Spider):

 name = 'scrapy_spider_reviews'

 def __init__(self,url_list,search_key):#specified by -a

 self.search_key = search_key

 self.keywords = [w.lower() for w in search_key.split(" ") if w
not in stopwords]

 self.start_urls =url_list.split(',')

 super(Search, self).__init__(url_list)

 def start_requests(self):

 for url in self.start_urls:

 yield Request(url=url, callback=self.parse_site,dont_
filter=True)

 def parse_site(self, response):

 ## Get the selector for xpath parsing or from newspaper

 def crop_emptyel(arr):

 return [u for u in arr if u!=' ']

 domain = urlparse(response.url).hostname

 a = Article(response.url)

 a.download()

Chapter 8

[243]

 a.parse()

 title = a.title.encode('ascii','ignore').replace('\n','')

 sel = Selector(response)

 if title==None:

 title = sel.xpath('//title/text()').extract()

 if len(title)>0:

 title = title[0].encode('utf-8').strip().lower()

 content = a.text.encode('ascii','ignore').replace('\n','')

 if content == None:

 content = 'none'

 if len(crop_emptyel(sel.xpath('//div//article//p/text()').
extract()))>1:

 contents = crop_emptyel(sel.xpath('//div//article//p/
text()').extract())

 print 'divarticle'

 ….

 elif len(crop_emptyel(sel.xpath('/html/head/meta[@
name="description"]/@content').extract()))>0:

 contents = crop_emptyel(sel.xpath('/html/head/meta[@
name="description"]/@content').extract())

 content = ' '.join([c.encode('utf-8') for c in contents]).
strip().lower()

 #get search item

 search_item = SearchItem.django_model.objects.get(term=self.
search_key)

 #save item

 if not PageItem.django_model.objects.filter(url=response.url).
exists():

 if len(content) > 0:

 if CheckQueryinReview(self.keywords,title,content):

 if domain not in unwanted_domains:

 newpage = PageItem()

 newpage['searchterm'] = search_item

 newpage['title'] = title

 newpage['content'] = content

Sentiment Analyser Application for Movie Reviews

[244]

 newpage['url'] = response.url

 newpage['depth'] = 0

 newpage['review'] = True

 #newpage.save()

 return newpage

 else:

 return null

We can see that the Spider class from scrapy is inherited by the Search class
and the following standard methods have to be defined to override the standard
methods:

• __init__: The constructor of the spider needs to define the start_urls list
that contains the URL to extract content from. In addition, we have custom
variables such as search_key and keywords that store the information
related to the query of the movie's title used on the search engine API.

• start_requests: This function is triggered when spider is called and it
declares what to do for each URL in the start_urls list; for each URL,
the custom parse_site function will be called (instead of the default
parse function).

• parse_site: It is a custom function to parse data from each URL. To extract
the title of the review and its text content, we used the newspaper library
(sudo pip install newspaper) or, if it fails, we parse the HTML file
directly using some defined rules to avoid the noise due to undesired tags
(each rule structure is defined with the sel.xpath command). To achieve
this result, we select some popular domains (rottentomatoes, cnn, and so
on) and ensure the parsing is able to extract the content from these websites
(not all the extraction rules are displayed in the preceding code but they
can be found as usual in the GitHub file). The data is then stored in a page
Django model using the related Scrapy item and the ReviewPipeline
function (see the following section).

• CheckQueryinReview: This is a custom function to check whether the movie
title (from the query) is contained in the content or title of each web page.

To run the spider, we need to type in the following command from the
scrapy_spider (internal) folder:

scrapy crawl scrapy_spider_reviews -a url_list=listname -a search_
key=keyname

Chapter 8

[245]

Pipelines
The pipelines define what to do when a new page is scraped by the spider. In the
preceding case, the parse_site function returns a PageItem object, which triggers
the following pipeline (pipelines.py):

class ReviewPipeline(object):

 def process_item(self, item, spider):

 #if spider.name == 'scrapy_spider_reviews':#not working

 item.save()

 return item

This class simply saves each item (a new page in the spider notation).

Crawler
As we showed in the overview (the preceding section), the relevance of the review
is calculated using the PageRank algorithm after we have stored all the linked pages
starting from the review's URL. The crawler recursive_link_results.py performs
this operation:

#from scrapy.spider import Spider

from scrapy.selector import Selector

from scrapy.contrib.spiders import CrawlSpider, Rule

from scrapy.linkextractors import LinkExtractor

from scrapy.http import Request

from scrapy_spider.items import PageItem,LinkItem,SearchItem

class Search(CrawlSpider):

 name = 'scrapy_spider_recursive'

 def __init__(self,url_list,search_id):#specified by -a

 #REMARK is allowed_domains is not set then ALL are allowed!!!

 self.start_urls = url_list.split(',')

 self.search_id = int(search_id)

 #allow any link but the ones with different font
size(repetitions)

Sentiment Analyser Application for Movie Reviews

[246]

 self.rules = (

Rule(LinkExtractor(allow=(),deny=('fontSize=*','infoid=*','SortBy=*',
),unique=True), callback='parse_item', follow=True),

)

 super(Search, self).__init__(url_list)

 def parse_item(self, response):

 sel = Selector(response)

 ## Get meta info from website

 title = sel.xpath('//title/text()').extract()

 if len(title)>0:

 title = title[0].encode('utf-8')

 contents = sel.xpath('/html/head/meta[@name="description"]/@
content').extract()

 content = ' '.join([c.encode('utf-8') for c in contents]).strip()

 fromurl = response.request.headers['Referer']

 tourl = response.url

 depth = response.request.meta['depth']

 #get search item

 search_item = SearchItem.django_model.objects.get(id=self.search_
id)

 #newpage

 if not PageItem.django_model.objects.filter(url=tourl).exists():

 newpage = PageItem()

 newpage['searchterm'] = search_item

 newpage['title'] = title

 newpage['content'] = content

 newpage['url'] = tourl

 newpage['depth'] = depth

Chapter 8

[247]

 newpage.save()#cant use pipeline cause the execution can
finish here

 #get from_id,to_id

 from_page = PageItem.django_model.objects.get(url=fromurl)

 from_id = from_page.id

 to_page = PageItem.django_model.objects.get(url=tourl)

 to_id = to_page.id

 #newlink

 if not LinkItem.django_model.objects.filter(from_id=from_id).
filter(to_id=to_id).exists():

 newlink = LinkItem()

 newlink['searchterm'] = search_item

 newlink['from_id'] = from_id

 newlink['to_id'] = to_id

 newlink.save()

The CrawlSpider class from scrapy is inherited by the Search class, and the
following standard methods have to be defined to override the standard methods
(as for the spider case):

• __init__: The is a constructor of the class. The start_urls parameter
defines the starting URL from which the spider will start to crawl until the
DEPTH_LIMIT value is reached. The rules parameter sets the type of URL
allowed/denied to scrape (in this case, the same page but with different font
sizes is disregarded) and it defines the function to call to manipulate each
retrieved page (parse_item). Also, a custom variable search_id is defined,
which is needed to store the ID of the query within the other data.

• parse_item: This is a custom function called to store the important data from
each retrieved page. A new Django item of the Page model (see the following
section) from each page is created, which contains the title and content of the
page (using the xpath HTML parser). To perform the PageRank algorithm,
the connection from the page that links to each page and the page itself is
saved as an object of the Link model using the related Scrapy item (see the
following sections).

To run the crawler, we need to type the following from the (internal) scrapy_spider
folder:

scrapy crawl scrapy_spider_recursive -a url_list=listname -a search_
id=keyname

Sentiment Analyser Application for Movie Reviews

[248]

Django models
The data collected using the spiders needs to be stored in a database. In Django,
the database tables are called models and defined in the models.py file (within
the pages folder). The content of this file is as follows:

from django.db import models

from django.conf import settings

from django.utils.translation import ugettext_lazy as _

class SearchTerm(models.Model):

 term = models.CharField(_('search'), max_length=255)

 num_reviews = models.IntegerField(null=True,default=0)

 #display term on admin panel

 def __unicode__(self):

 return self.term

class Page(models.Model):

 searchterm = models.ForeignKey(SearchTerm, related_name='pages',null
=True,blank=True)

 url = models.URLField(_('url'), default='', blank=True)

 title = models.CharField(_('name'), max_length=255)

 depth = models.IntegerField(null=True,default=-1)

 html = models.TextField(_('html'),blank=True, default='')

 review = models.BooleanField(default=False)

 old_rank = models.FloatField(null=True,default=0)

 new_rank = models.FloatField(null=True,default=1)

 content = models.TextField(_('content'),blank=True, default='')

 sentiment = models.IntegerField(null=True,default=100)

class Link(models.Model):

 searchterm = models.ForeignKey(SearchTerm, related_name='links',null
=True,blank=True)

 from_id = models.IntegerField(null=True)

 to_id = models.IntegerField(null=True)

Chapter 8

[249]

Each movie title typed on the home page of the application is stored in the SearchTerm
model, while the data of each web page is collected in an object of the Page model.
Apart from the content field (HTML, title, URL, content), the sentiment of the review
and the depth in graph network are recorded (a Boolean also indicates if the web page
is a movie review page or simply a linked page). The Link model stores all the graph
links between pages, which are then used by the PageRank algorithm to calculate the
relevance of the reviews web pages. Note that the Page model and the Link model are
both linked to the related SearchTerm through a foreign key. As usual, to write these
models as database tables, we type the following commands:

python manage.py makemigrations

python manage.py migrate

To populate these Django models, we need to make Scrapy interact with Django, and
this is the subject of the following section.

Integrating Django with Scrapy
To make paths easy to call, we remove the external scrapy_spider folder so that
inside the movie_reviews_analyzer_app, the webmining_server folder is at the
same level as the scrapy_spider folder:

├── db.sqlite3

├── scrapy.cfg

├── scrapy_spider

│ ├── ...

│ ├── spiders

│ │ ...

└── webmining_server

We set the Django path into the Scrapy settings.py file:

Setting up django's project full path.

import sys

sys.path.insert(0, BASE_DIR+'/webmining_server')

Setting up django's settings module name.

os.environ['DJANGO_SETTINGS_MODULE'] = 'webmining_server.settings'

#import django to load models(otherwise AppRegistryNotReady: Models
aren't loaded yet):

import django

django.setup()

Sentiment Analyser Application for Movie Reviews

[250]

Now we can install the library that will allow managing Django models from Scrapy:

sudo pip install scrapy-djangoitem

In the items.py file, we write the links between Django models and Scrapy items
as follows:

from scrapy_djangoitem import DjangoItem

from pages.models import Page,Link,SearchTerm

class SearchItem(DjangoItem):

 django_model = SearchTerm

class PageItem(DjangoItem):

 django_model = Page

class LinkItem(DjangoItem):

 django_model = Link

Each class inherits the DjangoItem class so that the original Django models declared
with the django_model variable are automatically linked. The Scrapy project is
now completed so we can continue our discussion explaining the Django codes that
handle the data extracted by Scrapy and the Django commands needed to manage
the applications.

Commands (sentiment analysis model and
delete queries)
The application needs to manage some operations that are not allowed to the final
user of the service, such as defining a sentiment analysis model and deleting a query
of a movie in order to redo it instead of retrieving the existing data from memory.
The following sections will explain the commands to perform these actions.

Sentiment analysis model loader
The final goal of this application is to determine the sentiment (positive or negative)
of the movie reviews. To achieve that, a sentiment classifier must be built using some
external data, and then it should be stored in memory (cache) to be used by each
query request. This is the purpose of the load_sentimentclassifier.py command
displayed hereafter:

import nltk.classify.util, nltk.metrics

from nltk.classify import NaiveBayesClassifier

from nltk.corpus import movie_reviews

Chapter 8

[251]

from nltk.corpus import stopwords

from nltk.collocations import BigramCollocationFinder

from nltk.metrics import BigramAssocMeasures

from nltk.probability import FreqDist, ConditionalFreqDist

import collections

from django.core.management.base import BaseCommand, CommandError

from optparse import make_option

from django.core.cache import cache

stopwords = set(stopwords.words('english'))

method_selfeatures = 'best_words_features'

class Command(BaseCommand):

 option_list = BaseCommand.option_list + (

 make_option('-n', '--num_bestwords',

 dest='num_bestwords', type='int',

 action='store',

 help=('number of words with high
information')),)

 def handle(self, *args, **options):

 num_bestwords = options['num_bestwords']

 self.bestwords = self.GetHighInformationWordsChi(num_bestwords)

 clf = self.train_clf(method_selfeatures)

 cache.set('clf',clf)

 cache.set('bestwords',self.bestwords)

At the beginning of the file, the variable method_selfeatures sets the method of
feature selection (in this case, the features are the words in the reviews; see Chapter 4,
Web Mining Techniques, for further details) used to train the classifier train_clf.
The maximum number of best words (features) is defined by the input parameter
num_bestwords. The classifier and the best features (bestwords) are then stored
in the cache ready to be used by the application (using the cache module). The
classifier and the methods to select the best words (features) are as follows:

 def train_clf(method):

 negidxs = movie_reviews.fileids('neg')

 posidxs = movie_reviews.fileids('pos')

Sentiment Analyser Application for Movie Reviews

[252]

 if method=='stopword_filtered_words_features':

 negfeatures = [(stopword_filtered_words_features(movie_
reviews.words(fileids=[file])), 'neg') for file in negidxs]

 posfeatures = [(stopword_filtered_words_features(movie_
reviews.words(fileids=[file])), 'pos') for file in posidxs]

 elif method=='best_words_features':

 negfeatures = [(best_words_features(movie_reviews.
words(fileids=[file])), 'neg') for file in negidxs]

 posfeatures = [(best_words_features(movie_reviews.
words(fileids=[file])), 'pos') for file in posidxs]

 elif method=='best_bigrams_words_features':

 negfeatures = [(best_bigrams_words_features(movie_reviews.
words(fileids=[file])), 'neg') for file in negidxs]

 posfeatures = [(best_bigrams_words_features(movie_reviews.
words(fileids=[file])), 'pos') for file in posidxs]

 trainfeatures = negfeatures + posfeatures

 clf = NaiveBayesClassifier.train(trainfeatures)

 return clf

 def stopword_filtered_words_features(self,words):

 return dict([(word, True) for word in words if word not in
stopwords])

 #eliminate Low Information Features

 def GetHighInformationWordsChi(self,num_bestwords):

 word_fd = FreqDist()

 label_word_fd = ConditionalFreqDist()

 for word in movie_reviews.words(categories=['pos']):

 word_fd[word.lower()] +=1

 label_word_fd['pos'][word.lower()] +=1

 for word in movie_reviews.words(categories=['neg']):

 word_fd[word.lower()] +=1

Chapter 8

[253]

 label_word_fd['neg'][word.lower()] +=1

 pos_word_count = label_word_fd['pos'].N()

 neg_word_count = label_word_fd['neg'].N()

 total_word_count = pos_word_count + neg_word_count

 word_scores = {}

 for word, freq in word_fd.iteritems():

 pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos']
[word],

 (freq, pos_word_count), total_word_count)

 neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg']
[word],

 (freq, neg_word_count), total_word_count)

 word_scores[word] = pos_score + neg_score

 best = sorted(word_scores.iteritems(), key=lambda (w,s): s,
reverse=True)[:num_bestwords]

 bestwords = set([w for w, s in best])

 return bestwords

 def best_words_features(self,words):

 return dict([(word, True) for word in words if word in self.
bestwords])

 def best_bigrams_word_features(self,words,
measure=BigramAssocMeasures.chi_sq, nbigrams=200):

 bigram_finder = BigramCollocationFinder.from_words(words)

 bigrams = bigram_finder.nbest(measure, nbigrams)

 d = dict([(bigram, True) for bigram in bigrams])

 d.update(best_words_features(words))

 return d

Sentiment Analyser Application for Movie Reviews

[254]

Three methods are written to select words in the preceding code:

• stopword_filtered_words_features: Eliminates the stopwords using the
Natural Language Toolkit (NLTK) list of conjunctions and considers the rest
as relevant words

• best_words_features: Using the X2 measure (NLTK library), the most
informative words related to positive or negative reviews are selected
(see Chapter 4, Web Mining Techniques, for further details)

• best_bigrams_word_features: Uses the X2 measure (NLTK library) to find
the 200 most informative bigrams from the set of words (see Chapter 4, Web
Mining Techniques, for further details)

The chosen classifier is the Naive Bayes algorithm (see Chapter 3, Supervised Machine
Learning) and the labeled text (positive, negative sentiment) is taken from the
NLTK.corpus of movie_reviews. To install it, open a terminal in Python and
install movie_reviews from corpus:

nltk.download()--> corpora/movie_reviews corpus

Deleting an already performed query
Since we can specify different parameters (such as the feature selection method,
the number of best words, and so on), we may want to perform and store again
the sentiment of the reviews with different values. The delete_query command
is needed for this purpose and it is as follows:

from pages.models import Link,Page,SearchTerm

from django.core.management.base import BaseCommand, CommandError

from optparse import make_option

class Command(BaseCommand):

 option_list = BaseCommand.option_list + (

 make_option('-s', '--searchid',

 dest='searchid', type='int',

 action='store',

 help=('id of the search term to delete')),)

 def handle(self, *args, **options):

 searchid = options['searchid']

 if searchid == None:

Chapter 8

[255]

 print "please specify searchid: python manage.py
--searchid=--"

 #list

 for sobj in SearchTerm.objects.all():

 print 'id:',sobj.id," term:",sobj.term

 else:

 print 'delete...'

 search_obj = SearchTerm.objects.get(id=searchid)

 pages = search_obj.pages.all()

 pages.delete()

 links = search_obj.links.all()

 links.delete()

 search_obj.delete()

If we run the command without specifying the searchid (the ID of the query), the
list of all the queries and related IDs will be shown. After that we can choose which
query we want to delete by typing the following:

python manage.py delete_query --searchid=VALUE

We can use the cached sentiment analysis model to show the user the online
sentiment of the chosen movie, as we explain in the following section.

Sentiment reviews analyser – Django views
and HTML
Most of the code explained in this chapter (commands, Bing search engine, Scrapy,
and Django models) is used in the function analyzer in views.py to power the home
webpage shown in the Application usage overview section (after declaring the URL in
the urls.py file as url(r'^$','webmining_server.views.analyzer')).

def analyzer(request):

 context = {}

 if request.method == 'POST':

 post_data = request.POST

 query = post_data.get('query', None)

 if query:

 return redirect('%s?%s' % (reverse('webmining_server.views.
analyzer'),

Sentiment Analyser Application for Movie Reviews

[256]

 urllib.urlencode({'q': query})))

 elif request.method == 'GET':

 get_data = request.GET

 query = get_data.get('q')

 if not query:

 return render_to_response(

 'movie_reviews/home.html', RequestContext(request,
context))

 context['query'] = query

 stripped_query = query.strip().lower()

 urls = []

 if test_mode:

 urls = parse_bing_results()

 else:

 urls = bing_api(stripped_query)

 if len(urls)== 0:

 return render_to_response(

 'movie_reviews/noreviewsfound.html',
RequestContext(request, context))

 if not SearchTerm.objects.filter(term=stripped_query).exists():

 s = SearchTerm(term=stripped_query)

 s.save()

 try:

 #scrape

 cmd = 'cd ../scrapy_spider & scrapy crawl scrapy_spider_
reviews -a url_list=%s -a search_key=%s' %('\"'+str(','.join(urls[:num_
reviews]).encode('utf-8'))+'\"','\"'+str(stripped_query)+'\"')

 os.system(cmd)

 except:

 print 'error!'

 s.delete()

 else:

 #collect the pages already scraped

Chapter 8

[257]

 s = SearchTerm.objects.get(term=stripped_query)

 #calc num pages

 pages = s.pages.all().filter(review=True)

 if len(pages) == 0:

 s.delete()

 return render_to_response(

 'movie_reviews/noreviewsfound.html',
RequestContext(request, context))

 s.num_reviews = len(pages)

 s.save()

 context['searchterm_id'] = int(s.id)

 #train classifier with nltk

 def train_clf(method):

 ...

 def stopword_filtered_words_features(words):

 ...

 #Eliminate Low Information Features

 def GetHighInformationWordsChi(num_bestwords):

 ...

 bestwords = cache.get('bestwords')

 if bestwords == None:

 bestwords = GetHighInformationWordsChi(num_bestwords)

 def best_words_features(words):

 ...

 def best_bigrams_words_features(words,
measure=BigramAssocMeasures.chi_sq, nbigrams=200):

 ...

 clf = cache.get('clf')

 if clf == None:

 clf = train_clf(method_selfeatures)

 cntpos = 0

Sentiment Analyser Application for Movie Reviews

[258]

 cntneg = 0

 for p in pages:

 words = p.content.split(" ")

 feats = best_words_features(words)#bigram_word_
features(words)#stopword_filtered_word_feats(words)

 #print feats

 str_sent = clf.classify(feats)

 if str_sent == 'pos':

 p.sentiment = 1

 cntpos +=1

 else:

 p.sentiment = -1

 cntneg +=1

 p.save()

 context['reviews_classified'] = len(pages)

 context['positive_count'] = cntpos

 context['negative_count'] = cntneg

 context['classified_information'] = True

 return render_to_response(

 'movie_reviews/home.html', RequestContext(request, context))

The inserted movie title is stored in the query variable and sent to the bing_api
function to collect review's URL. The URL are then scraped calling Scrapy to find
the review texts, which are processed using the clf classifier model and the selected
most informative words (bestwords) retrieved from the cache (or the same model is
generated again in case the cache is empty). The counts of the predicted sentiments
of the reviews (positive_counts, negative_counts, and reviews_classified)
are then sent back to the home.html (the templates folder) page, which uses the
following Google pie chart code:

 <h2 align = Center>Movie Reviews Sentiment Analysis</h2>
 <div class="row">
 <p align = Center>Reviews Classified : {{ reviews_
classified }}</p>
 <p align = Center>Positive Reviews : {{ positive_count
}}</p>
 <p align = Center> Negative Reviews : {{ negative_
count }}</p>
 </div>
 <section>

Chapter 8

[259]

 <script type="text/javascript" src="https://www.google.com/
jsapi"></script>
 <script type="text/javascript">
 google.load("visualization", "1", {packages:["corechart"]});
 google.setOnLoadCallback(drawChart);
 function drawChart() {
 var data = google.visualization.arrayToDataTable([
 ['Sentiment', 'Number'],
 ['Positive', {{ positive_count }}],
 ['Negative', {{ negative_count }}]
]);
 var options = { title: 'Sentiment Pie Chart'};
 var chart = new google.visualization.PieChart(document.
getElementById('piechart'));
 chart.draw(data, options);
 }
 </script>
 <p align ="Center" id="piechart" style="width: 900px; height:
500px;display: block; margin: 0 auto;text-align: center;" ></p>
 </div>

The function drawChart calls the Google PieChart visualization function, which
takes as input the data (the positive and negative counts) to create the pie chart. To
have more details about how the HTML code interacts with the Django views, refer
to Chapter 6, Getting Started with Django, in the URL and views behind html web pages
section. From the result page with the sentiment counts (see the Application usage
overview section), the PagerRank relevance of the scraped reviews can be calculated
using one of the two links at the bottom of the page. The Django code behind this
operation is discussed in the following section.

PageRank: Django view and the
algorithm code
To rank the importance of the online reviews, we have implemented the PageRank
algorithm (see Chapter 4, Web Mining Techniques, in the Ranking: PageRank algorithm
section) into the application. The pgrank.py file in the pgrank folder within the
webmining_server folder implements the algorithm that follows:

from pages.models import Page,SearchTerm

num_iterations = 100000

eps=0.0001

Sentiment Analyser Application for Movie Reviews

[260]

D = 0.85

def pgrank(searchid):

 s = SearchTerm.objects.get(id=int(searchid))

 links = s.links.all()

 from_idxs = [i.from_id for i in links]

 # Find the idxs that receive page rank

 links_received = []

 to_idxs = []

 for l in links:

 from_id = l.from_id

 to_id = l.to_id

 if from_id not in from_idxs: continue

 if to_id not in from_idxs: continue

 links_received.append([from_id,to_id])

 if to_id not in to_idxs: to_idxs.append(to_id)

 pages = s.pages.all()

 prev_ranks = dict()

 for node in from_idxs:

 ptmp = Page.objects.get(id=node)

 prev_ranks[node] = ptmp.old_rank

 conv=1.

 cnt=0

 while conv>eps or cnt<num_iterations:

 next_ranks = dict()

 total = 0.0

 for (node,old_rank) in prev_ranks.items():

 total += old_rank

 next_ranks[node] = 0.0

 #find the outbound links and send the pagerank down to each of
them

 for (node, old_rank) in prev_ranks.items():

Chapter 8

[261]

 give_idxs = []

 for (from_id, to_id) in links_received:

 if from_id != node: continue

 if to_id not in to_idxs: continue

 give_idxs.append(to_id)

 if (len(give_idxs) < 1): continue

 amount = D*old_rank/len(give_idxs)

 for id in give_idxs:

 next_ranks[id] += amount

 tot = 0

 for (node,next_rank) in next_ranks.items():

 tot += next_rank

 const = (1-D)/ len(next_ranks)

 for node in next_ranks:

 next_ranks[node] += const

 tot = 0

 for (node,old_rank) in next_ranks.items():

 tot += next_rank

 difftot = 0

 for (node, old_rank) in prev_ranks.items():

 new_rank = next_ranks[node]

 diff = abs(old_rank-new_rank)

 difftot += diff

 conv= difftot/len(prev_ranks)

 cnt+=1

 prev_ranks = next_ranks

 for (id,new_rank) in next_ranks.items():

 ptmp = Page.objects.get(id=id)

 url = ptmp.url

 for (id,new_rank) in next_ranks.items():

Sentiment Analyser Application for Movie Reviews

[262]

 ptmp = Page.objects.get(id=id)

 ptmp.old_rank = ptmp.new_rank

 ptmp.new_rank = new_rank

 ptmp.save()

This code takes all the links stores associated with the given SearchTerm object and
implements the PageRank score for each page i at time t, where P(i) is given by the
recursive equation:

() () () 1
1

1
1, ,

N

jit t
j

D
P i D A P j i N

N −
=

−
= + ∀∑ …

Here, N is the total number of pages, and
1

ij
j

A
N

= (Nj is the number of out links

of page j) if page j points to i; otherwise, N is 0. The parameter D is the so-called
damping factor (set to 0.85 in the preceding code), and it represents the probability
to follow the transition given by the transition matrix A. The equation is iterated until
the convergence parameter eps is satisfied or the maximum number of iterations,
num_iterations, is reached. The algorithm is called by clicking either scrape and
calculate page rank (may take a long time) or calculate page rank links at the
bottom of the home.html page after the sentiment of the movie reviews has been
displayed. The link is linked to the function pgrank_view in the views.py (through
the declared URL in urls.py: url(r'^pg-rank/(?P<pk>\d+)/','webmining_
server.views.pgrank_view', name='pgrank_view')):

def pgrank_view(request,pk):

 context = {}

 get_data = request.GET

 scrape = get_data.get('scrape','False')

 s = SearchTerm.objects.get(id=pk)

 if scrape == 'True':

 pages = s.pages.all().filter(review=True)

 urls = []

 for u in pages:

 urls.append(u.url)

 #crawl

Chapter 8

[263]

 cmd = 'cd ../scrapy_spider & scrapy crawl scrapy_spider_recursive
-a url_list=%s -a search_id=%s' %('\"'+str(','.join(urls[:]).encode('utf-
8'))+'\"','\"'+str(pk)+'\"')

 os.system(cmd)

 links = s.links.all()

 if len(links)==0:

 context['no_links'] = True

 return render_to_response(

 'movie_reviews/pg-rank.html', RequestContext(request,
context))

 #calc pgranks

 pgrank(pk)

 #load pgranks in descending order of pagerank

 pages_ordered = s.pages.all().filter(review=True).order_by('-new_
rank')

 context['pages'] = pages_ordered

 return render_to_response(

 'movie_reviews/pg-rank.html', RequestContext(request, context))

This code calls the crawler to collect all the linked pages to the reviews and calculate
the PageRank scores using the code discussed earlier. Then the scores are displayed
in the pg-rank.html page (in descending order by page rank score) as we showed
in the Application usage overview section of this chapter. Since this function can take a
long time to process (to crawl thousands of pages), the command run_scrapelinks.
py has been written to run the Scrapy crawler (the reader is invited to read or modify
the script as they like as an exercise).

Admin and API
As the last part of the chapter, we describe briefly some possible admin management
of the model and the implementation of an API endpoint to retrieve the data
processed by the application. In the pages folder, we can set two admin interfaces in
the admin.py file to check the data collected by the SearchTerm and Page models:

from django.contrib import admin

from django_markdown.admin import MarkdownField, AdminMarkdownWidget

Sentiment Analyser Application for Movie Reviews

[264]

from pages.models import SearchTerm,Page,Link

class SearchTermAdmin(admin.ModelAdmin):

 formfield_overrides = {MarkdownField: {'widget':
AdminMarkdownWidget}}

 list_display = ['id', 'term', 'num_reviews']

 ordering = ['-id']

class PageAdmin(admin.ModelAdmin):

 formfield_overrides = {MarkdownField: {'widget':
AdminMarkdownWidget}}

 list_display = ['id', 'searchterm', 'url','title','content']

 ordering = ['-id','-new_rank']

admin.site.register(SearchTerm,SearchTermAdmin)

admin.site.register(Page,PageAdmin)

admin.site.register(Link)

Note that both SearchTermAdmin and PageAdmin display objects with decreasing ID
(and new_rank in the case of PageAdmin). The following screenshot is an example:

Chapter 8

[265]

Note that although it is not necessary, the Link model has also been included in the
admin interface (admin.site.register(Link)). More interestingly, we can set up
an API endpoint to retrieve the sentiment counts related to a movie's title. In the
api.py file inside the pages folder, we can have the following:

from rest_framework import views,generics

from rest_framework.permissions import AllowAny

from rest_framework.response import Response

from rest_framework.pagination import PageNumberPagination

from pages.serializers import SearchTermSerializer

from pages.models import SearchTerm,Page

class LargeResultsSetPagination(PageNumberPagination):

 page_size = 1000

 page_size_query_param = 'page_size'

 max_page_size = 10000

class SearchTermsList(generics.ListAPIView):

 serializer_class = SearchTermSerializer

 permission_classes = (AllowAny,)

 pagination_class = LargeResultsSetPagination

 def get_queryset(self):

 return SearchTerm.objects.all()

class PageCounts(views.APIView):

 permission_classes = (AllowAny,)

 def get(self,*args, **kwargs):

 searchid=self.kwargs['pk']

 reviewpages = Page.objects.filter(searchterm=searchid).
filter(review=True)

 npos = len([p for p in reviewpages if p.sentiment==1])

 nneg = len(reviewpages)-npos

 return Response({'npos':npos,'nneg':nneg})

Sentiment Analyser Application for Movie Reviews

[266]

The PageCounts class takes as input the ID of the search (the movie's title) and it
returns the sentiments, that is, positive and negative counts, for the movie's reviews.
To get the ID of earchTerm from a movie's title, you can either look at the admin
interface or use the other API endpoint SearchTermsList; this simply returns the
list of the movies' titles together with the associated ID. The serializer is set on the
serializers.py file:

from pages.models import SearchTerm

from rest_framework import serializers

class SearchTermSerializer(serializers.HyperlinkedModelSerializer):

 class Meta:

 model = SearchTerm

 fields = ('id', 'term')

To call these endpoints, we can again use the swagger interface (see Chapter 6, Getting
Started with Django) or use the curl command in the terminal to make these calls.
For instance:

curl -X GET localhost:8000/search-list/

{"count":7,"next":null,"previous":null,"results":[{"id":24,"term":"the ma
rtian"},{"id":27,"term":"steve jobs"},{"id":29,"term":"suffragette"},{"i
d":39,"term":"southpaw"},{"id":40,"term":"vacation"},{"id":67,"term":"the
revenant"},{"id":68,"term":"batman vs superman dawn of justice"}]}

and

curl -X GET localhost:8000/pages-sentiment/68/

{"nneg":3,"npos":15}

Chapter 8

[267]

Summary
In this chapter, we described a movie review sentiment analyzer web application
to make you familiar with some of the algorithms and libraries we discussed in
Chapter 3, Supervised Machine Learning, Chapter 4, Web Mining Techniques, and
Chapter 6, Getting Started with Django.

This is the end of a journey: by reading this book and experimenting with the
codes provided, you should have acquired significant practical knowledge about the
most important machine learning algorithms used in the commercial environment
nowadays.

You should be now ready to develop your own web applications and ideas using
Python and some machine learning algorithms, learned by reading this book. Many
challenging data-related problems are present in the real world today, waiting to
be solved by people who can grasp and apply the material treated in this book, and
you, who have arrived at this point, are certainly one of those people.

[269]

Index
A
ad.data file

URL 28
admin

API, implementing 263-266
commands, writing 206, 207
creating 204
RESTful API 207-209
shell interface, creating 206

agglomeration, linkage criteria
average linkage 56
complete linkage 56
single linkage 56
UPGMA 56
Ward algorithm 56

agglomerative clustering 54
Alternating Least Square (ALS) 164, 165
app

HTML web pages 197
models, creating 197
URL 197
URL declarations 200-203
views 200-203
writing 196

array manipulations
argsort method 18
array_equal method 18
concatenate method 18
flatten method 18
fromstring method 18
random method 18
reshape method 18
shuffle method 18
sort method 18
tostring method 18

transpose method 18
unique method 18

array operations
put method 22
take method 22

arrays creation
about 13
Copy method 12
Eye method 13
Fill method 12
identity method 12
ones_like method 12
ones method 12
random submodule method 13
Tolist method 12
vstack method 13
zeros_like method 12
zeros method 12

B
batch gradient descent 75
Baum-Welch algorithm 111
BeautifulSoup 132
Boston's housing dataset

URL 97
breadth-first algorithm 120

C
centroid methods

about 50
k-means 50, 51

classification
about 4
methods, comparing 96

[270]

classification problem
solving 102-107

clustering algorithms
about 45
centroid methods 50
density methods 51
distribution methods 46
hierarchical methods 54-56

clustering methods
comparison 57-65
training 57-65

cold start 157
Collaborative Filtering (CF)

about 153, 157
memory-based Collaborative Filtering 157
model-based Collaborative Filtering 164

commands
creating 206, 207

concentration parameter 141
Content-based Filtering (CBF)

about 153, 170
item features average method 171, 172
regularized linear regression

method 173, 174
Continuous Bag Of Words (CBOW)

about 128
mathematical description 129, 130

cosine similarity 158
Crawlera

URL 238
cross-site forgery protection

reference link 198
Cython 41

D
damping factor 123, 262
data

manipulating 8
preparing 8
visualizing 8

DataFrame 5, 26
DBSCAN 41, 51
decision trees 85-88
dendrogram 54

density methods
about 51
mean - shift 52-54

dimensionality reduction
about 65
Principal Component

Analysis (PCA) 66, 67
distributed bag of words (DBOW) 131
distributed memory model (DM) 131
distribution methods

about 46
expectation maximization 46, 47
mixture of Gaussian 47-49

divisive clustering 54
Django

about 4, 42, 191
installation 192, 193
integrating, with Scrapy 249, 250
models 248, 249
server, creating 192, 193
settings.py file 193-196

Django integration
delete_query command, using 254, 255
queries, deleting 250
reviews, calculating 255-259
sentiment analysis model, defining 250
sentiment classifier, building 250-254

Doc2Vec
about 128
extension 131

E
Eigenfaces

URL 67
Euclidean norm 50
expectation maximization

about 46, 47
E-step 46
log-likelihood function 46
M-step 46

F
frontier 120
fuzzy c-means 50

[271]

G
Gaussian Naive Bayes 82-84
Gaussians clustering 46
generalized linear models

about 75
k-nearest neighbours (KNN) 80
lasso regression 77
linear regression 76
logistic regression 77, 78
probabilistic interpretation 78, 79
ridge regression 76

GET method 191

H
hidden Markov model (HMM)

about 107-112
Python example 112-118

hierarchical methods 54-56
HTML web pages

about 197
creating 197-200

hybrid recommendation systems
about 179, 182
feature augmentation 179
feature combination 179
mixed 179
switched 179
weighted 179

Hypertext Transfer Protocol (HTTP)
about 191
GET method 191
POST method 191

I
indexer 121
information retrieval models

about 126
Doc2Vec 128
Latent Semantic Analysis (LSA) 127, 128
TF-IDF 127
Word2vec 128, 129

inverted index scheme 121

K
kernel function

using 95, 96
k-means 41, 50, 51
k-means++ 50
k-means (Lloyd's algorithm) 50
k-medians clustering 50
k-nearest neighbours (KNN) 80

L
Laplace smoothing 82
lasso regression 77
Latent Dirichlet allocation (LDA)

about 138
example 142-144
model 139-141

Latent Semantic Analysis (LSA) 126-128
learning recommendation system

association rules 175-177
LIBLINEAR 41
libraries

Django 42
Natural Language Toolkit (NLTK) 41
scikit-learn (sklearn) 41
SciPy 41
Scrapy 41

LIBSVM 41
linear algebra operations

dot method 24
inner method 24
linalg method 25

linear regression 76
logistic regression 77, 78
log-likelihood ratio (LLR)

about 177, 217
recommendation system method 177-179

M
machine learning

about 4
concepts 2, 3
example 5-7

[272]

module (library), importing 7
module (library), installing 7
usage 42

mathematical functions
argmax 25
argmin 25
Mean 25
min 25
std 25
var 25

MATLAB 37
matplotlib

about 2, 37-40
URL 40

mean - shift 52-54
mean square error (MSE) 74
memory-based Collaborative Filtering

about 157
item based Collaborative Filtering 160, 161
simplest item-based Collaborative

Filtering 162-164
user based Collaborative Filtering 157, 158

mixture of Gaussians 47-49
model-based Collaborative Filtering

Alternative Least Square (ALS) 164, 165
non-negative matrix

factorization (NMF) 168
singular value decomposition

(SVD) 169, 170
stochastic gradient descent (SGD) 166, 167

model error estimation 73-75
models

creating 197, 248, 249
module (library)

importing 7
installing 7

MovieLens
URL 153

movie recommendation system
admin interface 231-233
API 231-233
application setup 211-213
commands 215-220
information retrieval system

(movies query) 225-227
models 213, 214
rating system 228, 229

recommendation systems 229-231
user, signing up 221-224

movie review query example 132-137
movie sentiment analyzer

usage overview 236-238
Multinomial Naive Bayes 82, 83
Mutual Information (MI) 177
MySQL 194

N
Naive Bayes 41

about 80-82
Gaussian Naive Bayes 84
Multinomial Naive Bayes 82, 83

natural language processing
(NLP) 41, 125, 126

Natural Language Toolkit (NLTK) 41, 254
non-negative matrix

factorization (NMF) 168
Not a Number (NaN) 28
NumPy

about 2
array operations, performing 18-21
arrays, creating 9-13
arrays, manipulating 13-18
linear algebra operations, performing 23, 24
mathematical functions 25
statistics 25
using 8, 9

O
Octave 41
opinion mining

(sentiment analysis) 144-151
Oracle 194

P
PageRank

about 121-123, 235, 259
implementing 259-263

pandas
about 2, 26
data, exploring 26-31
data, manipulating 32-37

[273]

parsing 124
Pearson correlation 158
periodic 122
PostgreSQL 194
POST method 191
postprocessing information

about 137
Latent Dirichlet allocation (LDA) 138
opinion mining

(sentiment analysis) 144-151
Principal Component Analysis (PCA)

about 65-67
example 68-71

probabilistic interpretation
of generalized linear models 78, 79

Python
URL, for documentation 1

R
random forest 41, 89
ranking algorithm 121
rank sink 122
rbf kernel 100
recommendation systems

classification metrics 188-190
evaluation 183, 184
root mean square error (RMSE) 185-188

regression
about 4
methods, comparing 96
problem, solving 97-102

RESTful application programming
interfaces (APIs)

about 207
using 207-209

ridge regression 76
RLab 41

S
scikit-learn (sklearn) 41
SciPy 41
Scrapy

about 41, 235
crawler 245-247
Django, integrating 249, 250

pipelines 245
scraper 241-244
settings.py file 241
setting up 240

search engine
selecting 238-240

shell interface
creating 206

silhouette 64
similarities measures

about 156
Cosine similarity 156
Pearson correlation 156

singular value decomposition
(SVD) 71, 72, 164, 169, 170

skip-gram 128
softmax formula 130
spiders. See web crawlers
SQLite3 194
stemming 125
stochastic gradient descent

(SGD) 75, 166, 167
supervised learning

about 4
classification 4
regression 4

Support Vector Machine (SVM)
about 6, 89-94
kernel function, using 95, 96

T
Term Frequency, Inverse Document

Frequency (TF-IDF) model 127, 217
Tikhonov regularization 76
training dataset 3

U
unsupervised learning 3
URL

declarations 200-203
utility matrix 154, 155

V
Viterbi algorithm 110
Voronoi diagram 50

[274]

W
web content mining

about 123
parsing 124

web crawlers 120
web structure mining

about 120
indexer 121
ranking 121-123
web crawlers 120

Word2vec 128

	Preface
	Introduction to Practical Machine Learning
Using Python
	General machine-learning concepts
	Machine-learning example
	Installing and importing a module (library)

	Preparing, manipulating and visualizing data – NumPy, pandas and matplotlib tutorials
	Using NumPy
	Arrays creation
	Array manipulations
	Array operations
	Linear algebra operations
	Statistics and mathematical functions

	Understanding the pandas module
	Exploring data
	Manipulate data

	Matplotlib tutorial

	Scientific libraries used in the book
	When to use machine learning
	Summary

	Unsupervised Machine Learning
	Clustering algorithms
	Distribution methods
	Expectation maximization
	Mixture of Gaussians

	Centroid methods
	k-means

	Density methods
	Mean – shift

	Hierarchical methods
	Training and comparison of the clustering methods

	Dimensionality reduction
	Principal Component Analysis (PCA)
	PCA example

	Singular value decomposition
	Summary

	Supervised Machine Learning
	Model error estimation
	Generalized linear models
	Linear regression
	Ridge regression
	Lasso regression
	Logistic regression

	Probabilistic interpretation of generalized linear models
	k-nearest neighbours (KNN)

	Naive Bayes
	Multinomial Naive Bayes
	Gaussian Naive Bayes

	Decision trees
	Support vector machine
	Kernel trick

	A comparison of methods
	Regression problem
	Classification problem

	Hidden Markov model
	A Python example

	Summary

	Web Mining Techniques
	Web structure mining
	Web crawlers (or spiders)
	Indexer
	Ranking – PageRank algorithm

	Web content mining
	Parsing

	Natural language processing
	Information retrieval models
	TF-IDF
	Latent Semantic Analysis (LSA)
	Doc2Vec (word2vec)
	Word2vec – continuous bag of words and
skip-gram architectures
	Mathematical description of the CBOW model
	Doc2Vec extension
	Movie review query example

	Postprocessing information
	Latent Dirichlet allocation
	Model
	Example

	Opinion mining (sentiment analysis)

	Summary

	Recommendation Systems
	Utility matrix
	Similarities measures
	Collaborative Filtering methods
	Memory-based Collaborative Filtering
	User-based Collaborative Filtering
	Item-based Collaborative Filtering
	Simplest item-based Collaborative Filtering – slope one

	Model-based Collaborative Filtering
	Alternative least square (ALS)
	Stochastic gradient descent (SGD)
	Non-negative matrix factorization (NMF)
	Singular value decomposition (SVD)

	CBF methods
	Item features average method
	Regularized linear regression method

	Association rules for learning recommendation system
	Log-likelihood ratios recommendation system method
	Hybrid recommendation systems
	Evaluation of the recommendation systems
	Root mean square error (RMSE) evaluation
	Classification metrics

	Summary

	Getting Started with Django
	HTTP – the basics of the GET and POST methods
	Installation and server creation
	Settings

	Writing an app – most important features
	Models
	URL and views behind HTML web pages
	HTML pages

	URL declarations and views

	Admin
	Shell interface
	Commands
	RESTful application programming interfaces (APIs)

	Summary

	Movie Recommendation System Web Application
	Application setup
	Models
	Commands
	User sign up login/logout implementation
	Information retrieval system (movies query)
	Rating system
	Recommendation systems
	Admin interface and API
	Summary

	Sentiment Analyser Application for Movie Reviews
	Application usage overview
	Search engine choice and the application code
	Scrapy setup and the application code
	Scrapy settings
	Scraper
	Pipelines
	Crawler

	Django models
	Integrating Django with Scrapy
	Commands (sentiment analysis model and delete queries)
	Sentiment analysis model loader
	Deleting an already performed query
	Sentiment reviews analyser – Django views and HTML

	PageRank: Django view and the algorithm code
	Admin and API
	Summary

	Index
	_GoBack
	__DdeLink__711_1600504441
	_GoBack
	django-admin
	_GoBack

